Distributed Privacy-Preserving Prediction

Another day, another paper, this time by my postdoc Lingjuan Lyu and a few collaborators. Here’s the abstract:

In privacy-preserving machine learning, individual parties are reluctant to share their sensitive training data due to privacy concerns. Even the trained model parameters or prediction can pose serious privacy leakage. To address these problems, we demonstrate a generally applicable Distributed Privacy-Preserving Prediction (DPPP) framework, in which instead of sharing more sensitive data or model parameters, an untrusted aggregator combines only multiple models’ predictions under provable privacy guarantee. Our framework integrates two main techniques to guarantee individual privacy. First, we improve the previous analysis of the Binomial mechanism to achieve distributed differential privacy. Second, we utilize homomorphic encryption to ensure that the aggregator learns nothing but the noisy aggregated prediction. We empirically evaluate the effectiveness of our framework on various datasets, and compare it with other baselines. The experimental results demonstrate that our framework has comparable performance to the non-private frameworks and delivers better results than the local differentially private framework and standalone framework.

You can download the paper from here: http://arxiv.org/abs/1910.11478


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s