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1 Split Conformal Prediction
Conformal prediction [VGS05, AB21] is arguably the most elegant and practical
technique for improving the robustness of how we use predictions from (black-
box) machine-learning models. The classification setting is simplest to explain
so that’s where we will start. Suppose we have a model f̂ : X → [0, 1]K
that, given say an image x ∈ X, provides a vector f̂(x) ∈ [0, 1]K where the
i-th entry denotes the probability that x belongs to class i ∈ {1, . . . , K}. The
goal of conformal prediction is to construct, given an arbitrary pair (x, y) ∈
X × {1, . . . , K} drawn from the same (unknown) distribution as the training
data for f̂ , a prediction set C(x) ⊆ {1, . . . , K} using f̂ such that

1 − α ≤ Pr(y ∈ C(x)) (1)

for a user-specified error rate α ∈ [0, 1]. So, for example, if α is set at 0.1, then
we want the prediction set to contain the true label with probability at least
0.9. In other words, what we are seeking to do in (1) is to calibrate the (raw)
probability estimates of the predictions of f̂ .

There are several ways to achieve (1). The simplest procedure is what is
known as split conformation prediction, whereby the available labelled dataset
D = {(xi, yi)}N

i=1 is randomly split into a training set Dt of size N − n and a
validation set Dv of size n. The model f̂ is obtained by training on Dt. We
then define a conformal score s : X × {1, . . . , K} → R by

s(x, y) = 1 − f̂(x)y (2)

and use it to compute q̂, the ⌈(1 − α)(n + 1)⌉/n quantile of the set

{s(x, y) : (x, y) ∈ Dv}.

Here, ⌈·⌉ is the ceiling function and q̂ is the empirical estimate of the 1 − α
quantile adjusted for the size of the validation set. The conformal score (2) is a
number in [0, 1], and it is close to 0 when the model f̂ assigns high probability
to a class prediction, and close to 1 otherwise.
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Finally, given any new test data point x ∈ X, the prediction set C(x) is
defined to be

C(x) = {y : s(x, y) ≤ q̂}. (3)

Thus, the size of C(x) provides a measure of the model’s confidence on the true
classification of x, with higher confidence correlated with smaller size. Remark-
ably, the prediction set C(x) as constructed satisfies (1) in the following more
precise sense

1 − α ≤ Pr(y ∈ C(x)) ≤ 1 − α + 1
n + 1 ,

regardless of what the model class for f̂ is and what the underlying (unknown)
probability distribution D on X × {1, . . . , K} is, as long as the training, valida-
tion, and test data are all independently and identically distributed according to
D. The reason the coverage formula holds is because, under the i.i.d. assump-
tion which implies the training, validation and test data are all exchangable, the
conformal score of the test data point has equal probability of falling anywhere
in the ordered set of conformal scores for the validation set. Although coverage
is distribution-free, the size of the conformal sets depends heavily on how infor-
mative the base predictor is. This is where the sample complexity [AB99, BM02]
of the model class from which the base predictor is obtained matters.

In terms of applications, conformal prediction is well-suited for multi-label
classification problems, for example in image-classification problems where there
could be multiple objects in a scene. Importantly, conformal prediction can be
used to improve model robustness in a principled model-agnostic way, whereby
we only use a model’s predictions when it is sufficiently confident. (See [AB21,
§5.5] for details.) Through appropriately designed conformal score functions,
conformal prediction schemes have been generalised to other problem classes
like regression, outlier detection, and time-series prediction, including in se-
tups where the underlying data distribution can shift / drift in different ways
[GWDR21]. More recently, conformal prediction is being investigated for quan-
tifying output uncertainty and controlling hallucination in LLMs [KLG+23,
CGC24].

Split conformal prediction has also been generalised to a general method of
risk control called Learn-then-Test [ABC+25]. The general setup is as follows.
Given a model f̂ : X → Y trained using data generated i.i.d from an unknown
distribution D on X × Y , we construct a family of predictors f̂λ : X → Y ′,
indexed by λ in some set Λ, where Y ′ is an arbitrary space related to Y . (E.g.,
in the case of prediction sets for classification problems, Y ′ = 2Y .) We then
allow the user to choose a way to measure the risk associated with each predictor
f̂λ, which typically takes the following form

R(f̂λ) = E(x,y)∼D

[
l(f̂λ(x), y)

]
, (4)

where l(·, ·) is a loss function and the risk score measures the expected loss with
respect to the unknown underlying distribution D.
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Definition 1. We say a predictor f̂λ is a (α, δ)-risk-controlling prediction if,
with probability at 1 − δ, we have R(f̂λ) ≤ α.

In practice, the goal of risk control, given user-specified (α, δ), is to use
a validation set to estimate (4) for each possible f̂λ to find one that satisfies
Definition 1. The definition covers many special cases. For example, in the
classification setting where f̂λ is defined as in (3), we recover (1) by setting the
loss function to be l(f̂λ(x), y) = 1

[
y /∈ f̂λ(x)

]
since

R(f̂λ) = E(x,y)∼D

[
1(y /∈ f̂λ(x))

]
= P (y /∈ f̂λ(x)) = 1 − P (y ∈ f̂λ(x)).

Many other interesting setups like multi-label classification with controlled false-
discovery rate, and simultaneous guarantees on out-of-distribution detection and
coverage are covered in [AB21, ABC+25].

2 Online Conformal Prediction
We now provide a brief discussion of conformal prediction in the online learning
setting, following the treatment in [GV07]. In online learning, data arrives
sequentially and we have to make a prediction at every time step. In particular,
at time t, we would have observed a sequence of data

[(x1, y1), (x2, y2), . . . , (xt−1, yt−1)],

where xi ∈ X, yi ∈ Y and we are asked to predict the label of a new object xt.
Building on the general result in algorithm information theory that a sequence
is random iff it is unpredictable [Sch24], a general approach to solve the above
prediction problem is to use a randomness test to measure, for each yt ∈ Y , how
unusual the possible continuation of the sequence

[(x1, y1), (x2, y2), . . . , (xt−1, yt−1), (xt, yt)]

is and then use the randomness test scores to rule out unlikely labels.
Formally, a (computable) function T : (X × Y )∗ → [0, 1] is a randomness

test if for all ϵ ∈ (0, 1), all t ∈ {1, 2, . . .}, and all probability distributions D on
X × Y , we have

Dt{z ∈ (X × Y )t : T (z) ≤ ϵ} ≤ ϵ.

In other words, under the assumption that a sequence z is drawn i.i.d from an
(unknown) distribution D, if T (z) ≤ 0.01, then the probability of seeing z is at
most 0.01 regardless of what D is.

There are different ways to design practical randomness tests. The general
approach taken in [VGS05] starts with a nonconformity function that maps
every data sequence [(x1, y1), . . . , (xt, yt)] to a sequence of nonconformity scores
[α1, . . . , αt] in such a way that interchanging any two data points (xi, yi) and
(xj , yj) leads to the interchange of αi and αj with everything else staying the
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same. Nonconformity scores are so named because each of the score αi for data
point (xi, yi) is supposed to capture how unusual that data point is with respect
to the other data points in the data sequence, and the higher the nonconformity
score is, the more unusual a data point is.

Armed with nonconformity scores, we can then construct a randomness test
using the so-called p-value associated with each possible yt defined as follows

pyt
= |{i ∈ {1, . . . , t} : αi ≥ αt}|

t
, (5)

which is the proportion of the nonconformity scores that are at least as large
as the last value αt corresponding to (xt, yt). Given such a randomness test,
the conformal predictor is defined as the predictor that, at time t, given past
data [(x1, y1), . . . , (xt−1, yt−1)], a new object xt, and a desired confidence level
1 − ϵ ∈ (0, 1), outputs the prediction set

Γϵ([(x1, y1), . . . , (xt−1, yt−1)], xt) = {yt ∈ Y : pyt
> ϵ}. (6)

Under the assumption that data are generated i.i.d from an unknown distri-
bution D, which implies the exchangeability assumption on the nonconformity
scores, the conformal predictor comes with the guarantee that the actual value
of yt for xt drawn from D is in the prediction set (6) with probability at least
1 − ϵ.

There are a variety of ways of designing nonconformity scores. We have seen
how nonconformality score can be defined with respect to a given classifier f̂ in
(2). We can similarly define the nonconformality score for a regression model ĥ
using the residuals

αi = s(xi, yi) = |yi − ĥ(xi)|,

as is done in [NMV01]. (It is worth noting that monotonic transformations
of a nonconformity score will not change the output of conformal prediction,
since it is only the rank order of nonconformity scores that matter.) If f̂ and ĥ
are not black boxes but have some known structure, we can sometimes exploit
that structure to construct the nonconformity scores. For example, given a
support vector machine, we can use the Lagrange multipliers associated with
each training data as the nonconformity scores.

3 Conformal Testing
Conformal prediction has been extended beyond exchangeable data to also work
on a class of online compression models [Vov06] that includes variable-order
Markov models and various statistical models based on exponential family dis-
tributions. It turns out there is also something between exchangeability and
online compression models where conformal prediction works well and can be
computed efficiently: martingales. The details of the latter can be found in
[Vov25, VNG25]. These estimators work with so-called e-values rather than
p-values; e-values can always be obtained from p-values and the ’e’ stands for
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expectations. An important application for conformal e-testing is that it can be
used to detect and quantify model misspecification when using Bayesian mix-
ture estimators like Context Tree Weighting [WST95], variations of which have
been used successfully in various approximations of the AIXI model [HQC24],
including [VNH+11, YZWN22, YZNH24, NYZCC25]. It maybe possible to
improve the robustness of these universal reinforcement learning algorithms
using conformal prediction at relatively low computational cost. More spec-
ulatively, this line of research could result in general methods for dealing with
the problematic behaviour of Bayesian predictors under model misspecification
[GVO17, vEGM+15], by putting together in complementary ways arguably some
of the most useful estimators from the Bayesian and Frequentist approach to
probability theory. These questions will be explored in greater detail in a sepa-
rate paper.
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