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1 Cyclotomic Polynomial and Cyclotomic Extension

Cyclotomic polynomials are widely used in the construction of homomorphic encryption schemes based
on Ring Learning With Error problems. In this short note, we attempt a self-contained introduction to
the cyclotomic polynomials and the Galois groups of cyclotomic extensions.

1.1 Cyclotomic polynomials

Cyclotomic polynomials are polynomials whose roots are the primitive roots of unity.
Definition 1.1.1. For any positive integer n, the n-th roots of unityRoots of unity are the (complex) solutions to the
equation xn = 1, and there are n solutions to the equation.
Theorem 1.1.2. Let n be a positive integer and define ζn = e2πi/n. Then the set of all n-th roots of
unity is given by

{ζkn | k = 0, 1, . . . , n− 1}, (1)

Proof. By Euler’s formula, we have

e2πi = cos(2π) + i sin(2π) = 1

and that (e2πi)k = e2kπi = 1 for all k ∈ {0, 1, . . . , n− 1}. To solve for xn = 1, note that

xn = 1 = e0 = e2πi = e4πi = e6πi = · · · = e2kπi.

Raising each term to the power of 1/n yields

x = (xn)1/n = 1 = e2πi/n = e4πi/n = e6πi/n = · · · = e2kπi/n.

Therefore, there are n distinct solutions to xn = 1, each given by ζkn, for k = 0, 1, . . . , n− 1

Example 1.1.3. The 1st root of unity is 1. The 2nd roots of unity are ζ02 = 1 and ζ12 = −1. The 3rd
roots of unity are ζ03 = 1, ζ13 = − 1
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We sometimes drop the subscript to ζn if the context is clear.

Geometrically, we can interpret the nth roots of unity as the points that are evenly spread on the unit
circle in the complex plane, starting from 1 on the real axis. (The word “cyclotomic” means ”circle-
dividing”.) Equivalently, they are the vertices of a regular n-gon that lie on the unit circle, with the real
value 1 as one of the n vertices. Figure 1 illustrates the 3rd roots of unity.

In general, the equation xn = 1 can be defined over different fields. In the real field R, the only
possible roots of unity are ±1. In the complex field C, the nth roots of unity form a cyclic group under
multiplication. The generator is e2πi/n and the group order is n, as shown in Theorem 1.1.2. In a finite
field, for example F7 = Z/7Z = {0, 1, 2, 3, 4, 5, 6}, the 3rd roots of unity are {1, 2, 4}, because these
are the only numbers equal to 1 modulo 7 when raising to the third power.
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Figure 1: The 3rd roots of unity ζ0 = 1, ζ1 = − 1
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Definition 1.1.4. An n-th root of unity r is called primitivePrimitive root if it is not a d-th root of unity for any integer
d smaller than n; i.e. rn = 1 and rd 6= 1 for d < n.

Geometrically, r is primitive if it is a vertex of a regular polygon that lies on the unit circle, but not
a vertex of a smaller regular polygon that lies on the unit circle.
Example 1.1.5. 1 is not primitive. The two real roots ±1 of the 4th roots of unity are not primitive,
because they are also the 2nd roots of unity. Both complex roots of the 3rd roots of unity are primitive.
The primitive 6th roots of unity are shown in Figure 2.
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Figure 2: The 6th roots of unity ζ0 = 1, ζ1 = 1
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2 . The primitive roots are ζ1, ζ5 that are coloured in green. ζ0, ζ2, ζ4 are not primitive because

they are also the 3rd roots of unity. ζ0, ζ3 are not primitive because they are also the 2nd roots of unity.

The following theorem provides an easy way to find the n-th primitive roots of unity.
Theorem 1.1.6. The n-th primitive roots of unity are {ζkn | 1 ≤ k ≤ n− 1 and gcd(k, n) = 1}.

If n is prime, then all the n-th roots of unity except 1 are primitive. It follows from Theorem 1.1.6
that the number of n-th primitive roots of unity is equal to the number of natural numbers smaller than
n that is coprime with n, which is also known as the Euler’s totient function

φ(n) = |{k | 1 ≤ k ≤ n− 1 and gcd(k, n) = 1}|.

For example, there are four 12th primitive roots of unity {ζ, ζ5, ζ7, ζ11}.
We now have the necessary components to define cyclotomic polynomials.

Definition 1.1.7. The n-th cyclotomic polynomial Φn(x)Cyclotomic
polynomial

is the polynomial whose roots are the n-th
primitive roots of unity. That is,

Φn(x) =
∏

1≤k<n
gcd(k,n)=1

(x− ζkn),

where ζkn = e2kπi/n is an nth root of unity (as before in Theorem 1.1.2).
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n Φn(x) roots

1 x− 1 1
2 x+ 1 ζ1 = −1

3 x2 + x+ 1 ζ1, ζ2

4 x2 + 1 ζ1 = i, ζ3 = −i
5 x4 + x3 + x2 + x+ 1 ζ1, ζ2, ζ3, ζ4

6 x2 − x+ 1 ζ1, ζ5

Table 1: First few cylotomic polynomials

Example 1.1.8. The first few cyclotomic polynomials and their roots are listed in Table 1. For n = 4,
the 4th cyclotomic polynomial is Φ4(x) = (x − i)(x + i) = x2 + 1, because the 4th roots of unity are
{±1,±i} and the primitive roots are ±i.

Here are two special cases of cyclotomic polynomials.
Remark 1.1.9. If n is prime, then the n-th cyclotomic polynomial is given by

Φn(x) = xn−1 + xn−2 + · · ·+ 1 =

n−1∑
t=0

xt.

If n = pk is a prime power, then the n-th cyclotomic polynomial is given by

Φn(x) = Φp(x
n/p) = Φp(x

pk−1

) =

p−1∑
t=0

xtp
k−1

.

As a special case, when p = 2 and m = 2n = pk ≥ 2, the m-th cyclotomic polynomial is
Φm(x) = xn + 1.

This is directly related to the underlying ring in the ring Learning With Errors problem.

By definition, cyclotomic polynomials are monic and have φ(n) linear factors. In addition, Φn(x)
divides xn−1 because the roots of the former are also roots of the latter, but not vice versa. This implies
an important relationship:

xn − 1 =
∏
d|n

Φd(x). (2)

Here are some special cases of Equation (2).
x2 − 1 = (x− 1)(x+ 1)

x3 − 1 = (x− 1)(x2 + x+ 1)

x4 − 1 = (x2 − 1)(x2 + 1) = (x− 1)(x+ 1)(x2 + 1)

x5 − 1 = (x− 1)(x4 + x3 + x2 + 1)

x6 − 1 = (x2 − 1)(x2 + x+ 1)(x2 − x+ 1) = (x3 − 1)(x+ 1)(x2 − x+ 1)

Note the pattern that if d divides n, then xd − 1 divides xn − 1:
xn − 1 = (xd − 1)(xn−d + xn−2d + · · ·+ xd + 1).

More formally, note that

xn − 1 =
∏

1≤k≤n

(x− ζkn)

=
∏
d:d|n

∏
1≤k≤n

gcd(k,n)=d

(x− ζkn)

=
∏
d:d|n

Φn
d

(x)

=
∏
d:d|n

Φd(x).
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The second equality is because d | n splits [1, n] into n
d mutually exclusive subsets. The third equality

uses the definition of cyclotomic polynomial. The last equality is because the subset of integers n
d and

d are identical.

Equation (2) says that a number is an n-th root of unity if and only if it is a d-th primitive root of
unity for some natural number d that divides n.

Example 1.1.10. The 6th roots of unity are shown in Figure 2. ζ0 = 1 is the 1st primitive root. ζ3 is the
2nd primitive root. ζ2 and ζ4 are the 3rd primitive roots. ζ1 and ζ5 are the 6th primitive roots. Hence,
the product of these four cyclotomic polynomials is a polynomial whose roots are the 6th roots of unity,
i.e., Φ1(x)Φ2(x)Φ3(x)Φ6(x) = x6 − 1.

Here are some important properties of cyclotomic polynomials.

Theorem 1.1.11. The n-th cyclotomic polynomial Φn(x) is a degree φ(n) polynomial with integer
coefficients.

Theorem 1.1.12. The n-th cyclotomic polynomial is the minimal polynomialMinimal
polynomial

of a n-th primitive root
of unity.

This theorem implies that cyclotomic polynomials are irreducible over the field of rationals Q.

1.2 Cyclotomic extensions

In this subsection, we use Galois theory to study the roots of cyclotomic polynomials and the symmetric
structure in their permutations.

To motivate the use of Galois theory, we start with this well-known result.

Theorem 1.2.1. If P (x) is a polynomial of degree n with leading coefficient 1, then any symmetric
polynomial in the roots of P (x) can be written as a polynomial in the coefficients of P (x).

Example 1.2.2. Consider a cubic polynomial with roots r, s, t:

P (x) = x3 + bx2 + cx+ d

= (x− r)(x− s)(x− t)

Expanding out the second line, we get

x3 − (r + s+ t)x2 + (rs+ rt+ st)x− rst.

Equating coefficients, we get the so-called elementary symmetric polynomials

−b = r + s+ t

c = rs+ rt+ st

−d = rst

Let Q(r, s, t) = r3 + s3 + t3 be a symmetric polynomial, which means switching any pair of variables
results in the same polynomial. Then one can show that Q(r, s, t) = −b3 − 3bc− 9d.

Group theory is the study of symmetries and Theorem 1.2.1 leads us to the study of the set of
permutations of the roots of a polynomial, which is known as the Galois group of the polynomial.

Definition 1.2.3. Let P (x) be a polynomial with rational coefficients. The splitting fieldSplitting field K of P (x) is
the smallest field that contains the roots of P (x). (K is called the splitting field because we can split
P (x) into linear factors in K. Also, by the properties of a field, K can be understood as the set of
multi-variate polynomial expressions in the roots of P (x) with rational coefficients.)

We want to understand the symmetricity of the elements of splitting field K of P (x) with respect to
permutations of the roots of P (x). These permutations of roots are obtained via automorphisms.

Definition 1.2.4. An automorphismAutomorphism α of the splitting field K of a polynomial P (x) is a bijection from
K to K such that

α(a+ b) = α(a) + α(b)

α(ab) = α(a)α(b).
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Note that for all a ∈ K that is a rational number, α(a) = a by the property of α. It then follows that
for all polynomials Q(r1, . . . , rn) ∈ K, where each ri is a root of P (x), we have

α(Q(r1, . . . , rn)) = Q(α(r1), . . . , α(rn)).

Now consider P (ri), which is a polynomial in a root of P (x) so P (ri) ∈ K. Since

P (α(ri)) = α(P (ri)) = α(0) = 0,

we can see that an automorphism always send a root of P (x) to another root of P (x); further, given
automorphisms are bijections, each automorphism can be identified with a permutation of the roots of
P (x).

A collection of permutations is a group if it is closed under composition of permutations. Since
automorphisms compose, the set of permutations of the roots of a polynomial P (x) that correspond
to an automorphism is a group, called the Galois Group of the polynomial P (x), or equivalently the
Galois Group Gal(K(ζ)/K) of the field extension K(ζ)/K, where the cyclotomic extension K(ζ) is
the splitting field of P (x).

For most polynomials P (x), every permutation of the roots induces an automorphism so the Ga-
lois Group of P (x) is the set of all permutations of the roots. But for some polynomials, the Galois
Group is a strict subset of the permutations of the roots because some permutations do not induce an
automorphism. This is the case for cyclotomic polynomials.

Let G be the Galois group of the n-th cyclotomic polynomial, where n is prime. The roots of the
polynomial are {ζ, ζ2, . . . , ζn−1}. Each α ∈ G maps ζ by α(ζ) = ζa for some a ∈ {1, . . . , n − 1}.
Since

α(ζk) = α(ζ)k = ζak,

the number a completely determines where all the other roots go. In general, the Galois group of
a polynomial can permute the roots arbitrarily, but the Galois group of cyclotomic polynomials only
allow permutations of the form

(ζ, ζ2, . . . , ζn−1) 7→ (ζa, ζ2a mod n, . . . , ζ(n−1)a mod n)

for all a ∈ {1, . . . , n− 1}.
Example 1.2.5. For n = 5, these are the only permutations induced by automorphisms:

(ζ1, ζ2, ζ3, ζ4) for a = 1

(ζ2, ζ4, ζ1, ζ3) for a = 2

(ζ3, ζ1, ζ4, ζ2) for a = 3

(ζ4, ζ3, ζ2, ζ1) for a = 4

The above chain of reasoning can be more formally stated in the following theorem, where (Z/nZ)∗

is the multiplicative integer modulo n group.
Theorem 1.2.6. The mapping

ϕ : Gal(K(ζn)/K)→ (Z/nZ)∗

ϕ(σ) = aσ mod n

that is given by σ(ζ) = ζaσ for all n-th roots of unity ζ is an injective group homomorphism.Injective
homomorphism

Proof. For any automorphisms σ, τ ∈ Gal(K(ζn)/K), a primitive root ζn ∈ µn satisfies στ(ζn) =
σ(ζaτn ) = ζaσaτn by applying the automorphism one after the other. In addition, the two automorphisms
gives another automorphism in the Galois group by composition, so στ(ζn) = ζaστn . Hence, we have
ζaσaτn = ζaστn . This implies aσaτ ≡ aστ mod n, because ζn has order n. Therefore, we have ϕ(στ) =
aστ ≡ aσaτ mod n = ϕ(σ)ϕ(τ) which entails ϕ is a homomorphism. The injectivity is not difficult to
see either.

We know the group (Z/nZ)∗ is abelian. The map ϕ embeds the Galois groups of cyclotomic
extensions to this abelian group, so the Galois group is also abelian. For a general base field K, the
group homomorphism need not be surjective. There are two special cases, K = Q and K = Fp, for a
prime p, that are of most interest for building lattice cryptosystems. We will look at the property of the
map ϕ in each special case one by one.
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Theorem 1.2.7. The Galois group of the cyclotomic extension Q(ζn) is isomorphic to the multiplicative
integer modulo n group.Isomorphism

when K = Q
That is,

Gal(Q(ζn)/Q) ∼= (Z/nZ)∗.

For each automorphism σ ∈ Gal(Q(ζn)/Q), there is an integer i ∈ (Z/nZ)∗ such that the automor-
phism σ 7→ [i] is mapped to the equivalent class of i if and only if σ(ζn) = ζin.

The automorphisms in the Galois group are functions on the roots of unity. We can think of the
equivalent class [i] as a function too given by [i] : ζ 7→ ζi for all roots ζ ∈ µn. The theorem says each
automorphism in the Galois group is uniquely mapped to an integer in the multiplicative group (or a
function). Theorem 1.2.7 is useful for proving the pseudorandomness of the ring LWE distribution as
we will see in a later section.

Observe that the order of the Galois group is equal to the degree of the Galois extension over Q,
which is equal to the degree φ(n) of the n-th cyclotomic polynomial. The order of the multiplicative
group is equal to the number of integers in [0, n − 1] that are coprime with n. The two numbers are
obviously equal.

When K is a field with non-zero prime characteristic char(K) = p (e.g., K = Fp), as is often
the case in cryptography, the homomorphism ϕ is not necessarily surjective. Theorem 1.2.8 caters for
this case. For our purpose, we are primarily interested in the cyclotomic polynomials Φd(x) where
gcd(d, p) = 1.
Theorem 1.2.8. Let Fq be a finite field with a prime power order q and gcd(q, n) = 1, the Galois group
of a cyclotomic extension Fq(ζn) of the finite fieldImage of Galois

group when
K = Fp

is mapped by the homomorphism ϕ to the cyclic group
〈q mod n〉 in (Z/nZ)∗. That is,

ϕ(Gal(Fq(ζn)/Fq)) = 〈q mod n〉 ⊆ (Z/nZ)∗.

In particular, the dimension of the cyclotomic extension is the order of q modulo n.

To prove Theorem 1.2.8, we need this next result.
Theorem 1.2.9. For a prime p and prime power q = pn, the pth power mapPower map ϕp : x 7→ xp on Fq
generates the Galois group Gal(Fq(ζn)/Fq).

Proof. (of Theorem 1.2.8 for the special case when q = p for a prime p) Theorem 1.2.9 implies that
the Galois group Gal(Fq(ζn)/Fq) is generated by the pth power map ϕp : x 7→ xp for all x ∈ Fq(ζn).
In addition, by Theorem 1.2.6 the group homomorphism ϕ associates to ϕp an non-negative integer
a mod n such that ϕp(ζ) = ζa for all nth roots of unity ζ ∈ µn. This entails ζp = ζa, which is
true if a ≡ p mod n. Hence, the homomorphism ϕ maps the pth power map ϕp in the Galois group
to p mod n in the group (Z/nZ)∗. Since Gal(Fq(ζn)/Fq) = 〈ϕp〉, its image is the cyclic group
〈p mod n〉 ∈ (Z/nZ)∗.

The assumption char(Fq) = p implies the polynomial xn − 1 is separable in Fq[x], so Fq(ζn) is
an Galois extension given that it is also the splitting field of xn − 1. Hence, we have [Fq(ζn) : Fq] =
|Gal(Fq(ζn)/Fq)| = |〈p mod n〉|, which is the order of p modulo n.

Knowing cyclotomic polynomials are irreducible over Q, we would like to know whether they are
also irreducible in a finite field Fq of prime power order q. This brings out the following theorem and
corollary. Denote Φ̄n(x) as reducing the coefficients of Φn(x) modulo q.
Theorem 1.2.10.Factor Φn(x)

in Fp
Let q be prime power and gcd(q, n) = 1, the monic irreducible factors of the polyno-

mial Φ̄n(x) ∈ Fp[x] are distinct and each has a degree equal to the order of q modulo n.

Corollary 1.2.11. The polynomial Φ̄n(x) is irreducible in Fq[x] if gcd(q, n) = 1 and 〈q mod n〉 =
(Z/nZ)∗. That is, q mod n is a generator of the group (Z/nZ)∗.

Example 1.2.12. For n = 5, the polynomial

Φ̄5(x) = x4 + x3 + x2 + x+ 1

can be factored in F11 as

(x− 3)(x− 4)(x− 5)(x− 9)
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because the order of 11 modulo 5 is 1. Similarly, it can be factored in F19 as

(x2 + 5x+ 1)(x2 + 15x+ 1)

because the order of 19 modulo 5 is 2. Similarly, it can be factored in F3 as

x4 + x3 + x2 + x+ 1

because the order of 3 modulo 5 is 4. The last case is an example of the corollary where the cyclic group
〈3 mod 5〉 is a generator of the group (Z/5Z)∗.
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