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ABSTRACT
The task of calculating similarities between strings held by differ-

ent organizations without revealing these strings is an increas-

ingly important problem in areas such as health informatics,

national censuses, genomics, and fraud detection. Most exist-

ing privacy-preserving string comparison functions are either

based on comparing sets of encoded character q-grams, allow

only exact matching of encrypted strings, or they are aimed at

long genomic sequences that have a small alphabet. The set-

based privacy-preserving similarity functions commonly used

to compare name and address strings in the context of privacy-

preserving record linkage do not take the positions of sub-strings

into account. As a result, two very different strings can poten-

tially be considered as an exact match leading to wrongly linked

records. Existing set-based techniques also cannot identify the

length of the longest common sub-string across two strings. In

this paper we propose a new approach for accurate and efficient

privacy-preserving string matching based on suffix trees that are

encoded using chained hashing. We incorporate a hashing based

encoding technique upon the encoded suffixes to improve pri-

vacy against frequency attacks such as those exploiting Benford’s

law. Our approach allows various operations to be performed

without the strings to be compared being revealed: the length

of the longest common sub-string, do two strings have the same

beginning, middle or end, and the longest common sub-string

similarity between two strings. These functions allow a more

accurate comparison of, for example, bank account, credit card,

or telephone numbers, which cannot be compared appropriately

with existing privacy-preserving stringmatching techniques. Our

evaluation on several data sets with different types of strings

validates the privacy and accuracy of our proposed approach.

KEYWORDS
Secure hash encoding, chained hashing, string comparison, se-
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1 INTRODUCTION
In application domains such as banking, health, bioinformatics,

and national security, it has become an increasingly important

aspect in decision making activities to integrate information from

multiple data sources. Integrating databases can help to identify

and link similar records that correspond to the same entity across

different databases, a task known as record linkage [6]. This in
turn can facilitate efficient and effective data analysis not possible

on an individual database.
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Table 1: Example string pairs from a real US voter data-
base [7] that have the same set of bigrams (q = 2) and there-
fore Jaccard or Dice similarities of 1.0 (same strings), but
low edit distance similarities [6].

Attribute First string Second string Bigram set

Edit dist.

similarity

Zipcode 27828 28278 (27, 28, 78, 82) 0.600

First name amira ramir (am, ir, mi, ra) 0.600

First name geroge roger (er, ge, og, ro) 0.500

First name jeane jeaneane (an, ea, je, ne) 0.625

Last name avera raver (av, er, ra, ve) 0.600

Last name einstein steins (ei, in, ns, st, te) 0.500

Last name gering ringer (er, ge, in, ng, ri) 0.333

Increasingly, record linkage needs to be conducted across

databases held by different organizations [30], where the comple-

mentary information held by these organizations can for example

help identify patient groups that are susceptible to certain ad-

verse drug reactions (linking doctors, hospital, and pharmacy

databases), or detect welfare cheats (linking taxation with em-

ployment and social security databases). However, in many of

these applications the databases to be linked contain private or

confidential information which cannot be shared between the

organizations involved in a linkage [30]. Similarly, the compar-

ison of genomic data often raises privacy concern as genome

sequences might contain proprietary information and because

such data are highly confidential in nature [24].

Privacy-preserving record linkage (PPRL) [29] research aims to

develop techniques that can link databases that contain sensi-

tive information without the need of any private or confidential

information to be shared between the organizations involved

in the linkage process. In PPRL, the attribute values of records

are usually encoded in some form before they are being com-

pared. Any encoding used must ensure that similarities can still

be calculated between encoded values without the need of shar-

ing the corresponding plain-text attribute values [29]. PPRL is

conducted in such a way that only limited information about the

record pairs classified as matches is revealed to the participating

organizations. The techniques used in PPRL must guarantee no

participating party, nor any external party, can compromise the

privacy of the entities in the databases that are linked.

Popular techniques to allow privacy-preserving string com-

parison are based on converting strings into sets of q-grams

(sub-strings of length q characters) and encoding these sets for

example into Bloom filters [23]. Bloom filters are bit arrays where

multiple independent hash functions are used to encode the el-

ements of a set by setting those bit positions to 1 that are hit

by a hash function. Bloom filters can be compared using set-

based similarity functions such as the Dice co-efficient [6]. It

has been shown that Bloom filter based PPRL is both efficient

and it can achieve accurate linkage results comparable to non

privacy-preserving record linkage [23].



Table 2: Overview of related privacy-preserving string matching techniques, where we show the complexity for encoding
and matching one string. l is the string length, |Σ| the size of the alphabet, h the number of hash functions used, b the
length of a Bloom filter or bit array, and t the number of hash tables.

Methods / Authors Data type Match type Encoding complexity Matching complexity Application

Chained hash encoded suffix tree (our work) String Exact O (l 2) O (l × log l ) PPRL

Bloom filter (Schnell et al. [23]) String Approximate O (l × h) O (b) PPRL

Tabulation hashing (Smith [25]) String Approximate O (l × t × h) O (b) PPRL

Bloom filter tree (Bezawada et al. [3]) String Exact O (l 2 × h) O (l × log l ) Cloud computing

Symmetric encrypted suffix tree (Chase and Shen [5]) String Exact O (l × b) O (l × b) Cloud computing

Oblivious RAM suffix array (Moataz and Blass [16]) String Exact O (l × log l ) O (l + log l ) Cloud computing

Burrows-Wheeler transformation (Shimizu et al. [24] Genomes Exact O (l ×
√
l × |Σ |) O (l 2 × |Σ |) Genomics

One drawback of set-based comparisons is however that the

sequence of characters of a string is lost when it is converted

into a q-gram set. As shown in Table 1, two different strings can

result in the same q-gram set and thus the same encoded Bloom

filter, and therefore can potentially identify the strings to be the

same. This can lead to falsely matched record pairs because of

too high similarities between rather different string values [6].

A second drawback of set-based string comparison functions

is that they only allow the calculation of an overall similarity

between two strings. However, identifying the longest common

sub-string between two strings can be crucial in certain applica-

tions. For example, Financial Intelligence Units around the world,

including FinCEN (US), the National Crime Agency (UK), and

AUSTRAC (Australia), collect financial information to help iden-

tify tax evasion, money laundering, and terrorism financing. This

involves linking records from different reporting entities such

as banks, casinos, and money remitters such as Western Union,

and requires finding matches in a privacy-preserving way where

bank identifiers such as SWIFT/BIC codes need to be paired with

bank account numbers. Sub-string matching is crucial because

leading zeros are often omitted, such that ‘DK54000074491162’

would be the same account as ‘DK5474491162’.

The likelihood of two different strings sharing the same or

a highly similar q-gram set increases if the size of the alphabet

(the number of unique characters) used to generate the strings

becomes smaller, because less unique q-grams can be generated.

Therefore, strings made from digits only (alphabet of size 10) will

more likely result in increased q-gram set similarities compared

to strings that contain letters (alphabet of size 26).

Contributions: In this paper we propose a novel approach

to privacy-preserving string matching that is based on secure

chained hash encoded suffix trees. In our approach each input

string in a database is first converted into a suffix tree and then

encoded by the database owner (DO). These encoded suffix trees

are then sent to a linkage unit (LU) [30]. The LU compares the

encoded suffix trees it receives from two or more DOs to identify

those pairs of trees that correspond to two strings that have (1) a

sub-string of a certain minimum length in common, (2) a certain

minimum similarity, (3) the same beginning, (4) same middle, or

(5) same ending. The LU however cannot learn the actual input

strings. To improve the privacy against frequency attacks, such as

exploiting Benford’s law [2], we propose a hash based encoding

for each suffix which does not allow the LU to learn the actual

input strings. We analyze the complexity, accuracy, as well as

privacy characteristics of our approach, and we experimentally

evaluate the approach using several data sets with different string

types (only letters, only digits, and mixed) and compare the ap-

proach to Bloom filter encoding [23] and tabulation hashing [25]

based privacy-preserving string matching.

2 RELATEDWORK
The privacy-preserving comparison of values (such as strings

or numbers) across databases is a common problem for many

application domains, and therefore a variety of techniques and

algorithms have been proposed, as illustrated in Table 2.

String matching is often used in a PPRL context where en-

coded values of quasi-identifying attributes of individuals (such

as their names and addresses) need to be compared across two

or more databases to link records [30]. Bloom filter (BF) encod-

ing is widely used in PPRL because it is efficient and supports

approximate matching of both strings [23, 30] and numerical

values [11, 28]. However, BFs cannot be used to identify longest

common sub-strings, because they require values to be converted

into q-gram sets whereby positional information is lost. Further-

more, the hashing functions used in BF encoding likely lead to

collisions (several q-grams hashed to the same bit position) and

therefore the similarities between BFs are approximations and

can be higher than the actual similarity between their correspond-

ing q-gram sets, as we experimentally show in Sect. 5.

Privacy-preserving matching of sequences is increasingly re-

quired in bioinformatics applications where the aim is to find the

longest matching sub-sequences for a query sequence in large

genome databases [24, 31]. The algorithms used in such appli-

cations often have high computational complexities. Shimizu

et al. [24] recently proposed an approach for searching simi-

lar string patterns in a genome database. The approach uses a

recursive oblivious transfer protocol based on additive homo-

morphic encryption to query sequences in the genome database

while ensuring each query does not lead to the identification

of other similar strings in the database. However, this approach

does not scale to queries of longer sequences because they incur

high computational and communication costs due to the complex

cryptographic functions used [24].

Suffix trees [15] are often used in bioinformatics applications

to search for patterns in genome or protein sequences [32]. A suf-

fix tree allows searching for a given pattern with a linear complex-

ity in terms of the length of the query string being searched [15].

Ukkonen [26] showed how suffix trees can be used for string

matching, however his approach required more space to hold a

suffix tree than the original string collection.

Chan et al. [4] proposed pruning techniques to reduce the

size of suffix trees generated from large string databases. Their

approach aims to improve the querying of strings by pruning

infrequent sub-string patterns and duplicate paths in a tree. How-

ever, pruning shorter sub-strings results in some string patterns

not being matched. Similarly, Patil et al. [18] proposed a method

that combines length and position filtering techniques for prun-

ing suffix trees and inverted lists of q-grams which resulted in a

reduction of the query time in the matching process.



Kimura et al. [12] proposed a string matching approach based

on suffix and longest common prefix arrays of q-grams. In their

approach, sub-strings in the database are extracted, where sub-

strings with frequencies higher than a given threshold and of a

minimum length are used as indexes for sub-strings matching.

The processing time of this approach crucially depends upon the

frequency and length threshold parameters used, where longer

minimum string length will reduce the success of sub-string

matching.

Babenko and Starikovskaya [1] proposed two algorithms that

use suffix arrays combined with longest common prefix arrays

to facilitate longest common sub-string searching in suffix trees.

These algorithms merge the two strings to be compared using a

special character ($) and employ either a sliding window or tree

based approach over the sorted arrays, achieving a linear time

complexity in the lengths of the two strings being compared.

Wang et al. [32] recently proposed a string matching protocol

based on suffix trees and edit distance constraints. This approach

finds all similar sub-strings for a given query in a collection of

strings, such that their edit distance with the query is within a

given threshold. To improve the efficiency of suffix tree genera-

tion the approach employs the Burrows-Wheeler Transformation

to index the string collection. Query strings are first partitioned

into segments where each segment is queried to find exactly

matching sub-strings to generate a group of candidate strings.

Due to the partitioning of query strings some segments can how-

ever result in higher edit distances which potentially can lead to

missed matching strings.

A suffix-tree based method to find the shortest unique sub-

string query for constant time online applications was proposed

by Pei et al. [20]. They employed suffix trees as they can be used

to get left-bound shortest unique sub-strings in constant time

which helps to improve the efficiency of online query application.

The use of suffix trees in privacy-preserving sub-string match-

ing has been investigated by Chase and Shen [5]. Their proposed

approach constructs a queryable encryption scheme for finding

all occurrences of a query string in a long encrypted string stored

on a server. The approach uses symmetric encryption over a

generated suffix tree to identify all matching sub-string patterns.

However, this approach reveals information about user queries

to the server which compromises the privacy of a user’s data.

Moataz and Blass [16] investigated the applicability of oblivious

suffix tree search over encrypted string data. Their approach

provides privacy on the user search patterns from the server but

it incurs large communication overhead for each query.

Bezawada et al. [3] proposed a protocol based on a pattern

aware secure search tree where each tree node contains a Bloom

filter that encodes a set of the encrypted strings. The approach is

aimed at cloud environments for two parties to compare strings

securely, where the parties only learn if their strings are matched

but not the actual matching sub-strings. This approach therefore

does not allow the privacy-preserving identification of longest

common sub-strings.

The approaches discussed above mostly allow a user to query

a database of strings or sequences for similar patterns, while

the problem we aim to address involves the identification of

similar sub-strings in two databases owned by different parties

without each party having to reveal their input strings. In contrast

to most existing techniques, our approach allows the efficient

and accurate privacy-preserving comparison of strings from two

databases to identify those string pairs that share a sub-string

with a certain minimum length.
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Figure 1: Overview of our proposed encoded suffix tree
based privacy-preserving string matching protocol.

3 PRIVACY-PRESERVING SUFFIX TREE
MATCHING

As outlined in Fig. 1, we now describe our protocol to match

strings across two databases in a privacy-preserving way using

encoded suffix trees. We assume two database owners (DOs),

each having a database of sensitive private string values they

want to compare with each other without revealing their actual

strings. As in common with many other PPRL approaches [30],

our protocol makes use of a linkage unit (LU), a third party that

will conduct the comparison of strings as converted into encoded

suffix trees by the two DOs. As we discuss in more detail in the

privacy analysis in Sect. 4.3, we assume the DOs and the LU are

semi-honest and follow the honest-but-curious (HBC) adversary

model without any collusion [14]. We now define the problem

we aim to solve more formally:

Def. 1. Privacy-preserving string matching: Without loss
of generality, we assume two DOs with their respective databases,
DA and DB , that wish to identify, through the use of a LU, all pairs
of matching strings (s1, s2), with s1 ∈ DA and s2 ∈ DB , such that
lcs(s1, s2) ≥ m, where lcs() is a function that returns the longest
common sub-string, andm ≥ 1 is the minimum length required
of a matching sub-string for s1 and s2 to be included in the set
of matching string pairs. The two DOs do not wish to reveal their
actual strings with each other nor with any other party, and the
only information the LU can learn are the lengths and positions of
the matching sub-strings but not their actual characters.

As we describe in Sect. 3.3, our encoding approach can also

identify if two strings have the same beginning, middle, or end.

For the remainder of this paper we use the following notation.

We assume all strings s are sequences of characters from a given

alphabet Σ, such as digits, letters, special characters, or a mix of

them, where s = Σ∗ is a string of arbitrary length and l = |s | is
the length of a string. We use $ to denote the special terminal

character that indicates the end of a string, where $ < Σ and $ is

not included in the length of a string (for example, |‘123$’| = 3).

Each string s1 ∈ DA and s2 ∈ DB is then converted into one

suffix tree, Ts1 and Ts2 , respectively, as we describe below.

To encode the sub-strings in all edges of a suffix tree Ts1 , we

use a secure hash function, denoted by h(), such as SHA256 [22],

resulting in a corresponding encoded tree T e
s1 . We use a secret

salt value, r , that is only known to the DOs, for all encodings to

prevent dictionary attacks by the LU. We next describe how we

generate and encode suffix trees, in Sect. 3.2 propose a method

to overcome frequency attacks by special encoding of the first

characters in suffixes, and in Sect. 3.3 discuss howwe calculate the

longest common sub-string, as well as other matching functions,

between encoded suffix trees in a privacy-preserving way.
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Figure 2: Example suffix tree generated from string ‘83321’,
where $ is used to indicate the end of a suffix.

3.1 Suffix Tree Construction and Encoding
We follow Ukkonen’s algorithm [26] to construct one suffix tree

for each string s1 ∈ DA and s2 ∈ DB . As an example, Fig. 2 shows

the suffix tree generated from string ‘83321’. Note that we do not

store the terminal character $ in any edges of a suffix tree.

Following Def. 1, if one is only interested in matching sub-

strings of minimum lengthm > 1, then only suffixes of lengthm
and longer need to be included in a suffix tree because suffixes

shorter thanm can never be part of a longest common suffix with

a minimum length ofm. For example, ifm = 3, then the suffixes

‘1$’ and ‘21$’ in Fig. 2 will not be included.

Encoding a tree to allow the calculation of longest common

sub-strings with other trees requires an encoding that allows

privacy-preserving matching of individual characters in a sub-

string without revealing these characters. However, the LU needs

to know which encoded characters are matching at what posi-

tions (i.e. correspond to the same unencoded character) in order

to be able to identify the longest common sub-string.

Since we assume the LU is semi-honest [14], it can attempt to

re-identify the original values that were encoded into the encoded

suffix trees it receives from the DOs. One common approach to

attack such encodings are frequency attacks [8, 13, 17], where

frequent encodings are mapped to frequent plain-text values or

frequent q-grams. A character based encoding, as we require in

our approach, will potentially allow a frequency analysis of hash

codes and thus likely lead to information leakage.

To overcome such attacks, we propose a chained hash en-

coding approach inspired by Blockchain [21] combined with

salting [17]. The salt, r , is a secret string value agreed by the DOs
that they do not share with the LU or any other party.

Algorithm 1 outlines the steps we use to encode each string

in a database. In line 1, we first initialize two lists, T and Te , to
store unencoded and encoded suffix trees, respectively. Next we

iterate over each string value s in database D in line 2 and use

function genSuffixTree() to generate a suffix tree T for s (line 3).
The function getSuffixes() in line 4 generates a list of suffixes, L,
of the suffix tree T . In lines 6 to 14 we encode each character in

each suffix x in the list L using a chained hash encoding method

as described next.

We denote the character at position p in a suffix x as cp , with
1 ≤ p ≤ |x |. Note that these positions are counted within a suffix

(a tree edge) but not within the full string. To encode the suffix

x = c1c2 . . . cl , with l = |x |, assigned to an edge in a suffix tree,

we propose the following chained encoding scheme to generate

the encoded suffix E = [e1, e2, . . . , el ]:

e1 = encode(c1, r ) = h(c1 + r ),

ep = encode(cp , ep−1, r ) = h(cp + ep−1 + r ), p > 1,

where + indicates the string concatenation operation, r is the

secret random salt value (known only to the DOs but not the

LU), and h() is a hash function from the SHA family [22]. To

7$2

7$
27$

33327

27$

327$

1$

21$

1$32 21$

83321

83321$

3
3

3

Figure 3: The suffix trees for two strings where their
longest common sub-string ‘332’ is highlighted in bold
and red circles. The corresponding chained encodings of
these two suffixes (paths) are described in Sect. 3.1.

Algorithm 1: Basic Encoding of Suffix Trees

Input:

- D : A database of strings

-m: Minimum suffix length

- r : Secret salt value

- h(): Hash function

Output:

- T: List of suffix trees

- Te : List of encoded suffix trees

1: T = [], Te = [] // Initialize the lists of suffix and encoded suffix trees

2: for s ∈ D do: // Loop over all strings in the database

3: T = genSuffixTree(s) // Generate the suffix tree for the string

4: L = getSuffixes(T) // Get the list of suffix values

5: Le = [] // Initialize a list to keep encoded suffixes

6: for x ∈ L do: // Loop over all suffixes

7: if |x | ≥ m do: // Check if suffix is long enough

8: E = [] // Initialize the list of encodings for this suffix

9: for p ∈ [1, |x |] do: // Loop over all characters in the suffix

10: if p = 1 do:
11: ep = h(c1 + r ) // Encode the first character with salt

12: else:
13: ep = h(cp + ep−1 + r ) // Chained hash encoding with salt

14: E .append (ep ) // Append encoding to encoded suffix

15: Le .add (E) // Add encoded suffix to the list of encoded suffixes

16: Te = genEncSuffixTree(Le , T) // Generate an encoded suffix tree

17: Te .add (Te ) // Add encoded tree to list of encoded suffix trees

18: T.add (T) // Add unencoded tree to list of suffix trees

19: return T, Te

generalize the encoding function for a suffix tree, we encode the

sub-string on each edge as above, but using the last encoded

character in its parent edge (if one exists) as the salt for the first

character, unless the edge has no parent, in which case we use

the original salt. Each edge in T therefore leads to one or more

hash encodings which are added in a list Le of encoded suffixes.

For example, for the two strings illustrated in Fig. 3, their

highlighted longest common sub-string ‘332’ when using r = ‘z’

as the secret salt value, will be encoded as:

(1) For string ‘83321’:
[h(‘3z’)], [h(‘3’+h(‘3z’)+‘z’), h(‘2’+h(‘3’+h(‘3z’)+‘z’)+‘z’),

h(‘1’+h(‘2’+h(‘3’+h(‘3z’)+‘z’)+‘z’)+‘z’)] =
[h(‘3z’)], [h(‘3’+e1+‘z’), h(‘2’+e2+‘z’), h(‘1’+e3+‘z’)]

(2) For string ‘33327’:
[h(‘3z’)], [h(‘3’+h(‘3z’)+‘z’)], [h(‘2’+h(‘3’+h(‘3z’)+‘z’)+‘z’),

h(‘7’+h(‘2’+h(‘3’+h(‘3z’)+‘z’)+‘z’)+‘z’)] =
[h(‘3z’)], [h(‘3’+e1+‘z’)], [h(‘2’+e2+‘z’), h(‘7’+e3+‘z’)]

As can be seen from the highlighted bold encodings, these

chained hash encodings allow the privacy-preserving identifi-

cation of the longest common sub-string by the LU without it

learning what the characters in the two input strings are.

Back to Algo. 1, in line 16, using T and the encoded suffixes

in Le , the function genEncSuffixTree() generates an encoded suf-

fix tree, T e
, from T . Finally, in lines 17 and 18, the generated

encoded and unencoded suffix trees are added to the lists Te and

T, respectively.
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Figure 4: Examples of three matching string pairs where the top row shows the original strings and their suffix trees,
the middle row shows the basic encodings from Sect. 3.1, and the bottom row the first character encoding described in
Sect. 3.2. The red circles and paths show the matching sub-strings, where the second column shows matching beginnings,
the third column matching middles, and the last column matching ends. In the third row the first character encodings
(which replace the basic encodings for the first characters in all suffixes) are shown in green, and r denotes the salt value.

A result of our encoding is that different occurrences of the

same character in a suffix, in fact, across a database, will be as-

signed different hash codes depending upon what comes before

the character, thereby making a frequency attack more challeng-

ing. In Fig. 3, the same digit in different tree edges will be encoded

differently, such that every encoding in a tree is unique. This is

discussed in detail in the privacy analysis in Sect. 4.3.

3.2 Secure First Character Encoding
As we discuss in more detail in Sect. 4.3, the distribution of the

first character in values can follow a specific distribution law, such

as Benford’s law [2] for telephone numbers and Zipf’s law [33]

for surnames. This potentially allows the LU to analyze if the first

character encodings of strings follow a specific distribution law

which would allow the identification of corresponding plain-text

characters. To prevent such frequency-based attacks, we apply

an extra encoding to the first characters of every suffix (path)

in a suffix tree. Our first character encoding aims to make the

frequency distribution of the encodings of the first characters

close to a uniform distribution.

Before the DOs apply the first character encoding to each suf-

fix in their encoded suffix trees, each DO independently conducts

a frequency analysis on the existing encodings of the first char-

acters of each value in its database. As we describe in Sect. 4.3, if

these existing encodings of the first characters follow a uniform

distribution in the strings in the two databases that are to be

matched, then the LU will have no frequency information that it

can exploit. In this case our first character encoding technique is

not required.

Algorithm 2: Secure First Character Encoding

Input:

- T: List of suffix trees

- Te : List of encoded suffix trees

- k : Number of characters to use to re-encode first character

- r : Secret salt value

- n: Modulo value for encoding

- h(): Hash function

Output:

- Tf : List of first character encoded suffix trees

1: Tf = [] // Initialize the list of first character encoded suffix trees

2: for Te ∈ Te do: // Loop over all encoded suffix trees

3: for E ∈ Te do: // Loop over each encoded suffix

4: x = getSuffix(E , Te , 𝒯 ) // Get the corresponding original suffix

5: e ′
1
= genEncFirstChar(x , k , r , n, h) // Get first character encoding

6: Te .replace(e ′
1
, E) // Replace the original first character encoding

7: Tf .add (Te )

8: return Tf

However, if this frequency analysis shows the encodings of

the first characters follow for example a Benford [2] or Zipf dis-

tribution [33], then the DOs would agree to apply the secure first

character encoding we describe next to each of their suffixes.

Algorithm 2 outlines the steps involved in our first character en-

coding technique that will result in a new frequency distribution

of encodings that is closer to uniform and very different from

the original distribution, as we experimentally validate in Sect. 5.

Prior to using Algo. 2, the DOs need to agree on k > 1, the

number of characters to use in the re-encoding of the first char-

acter, and the secret salt r known only to them. This salt value

can possibly be different from the one used in Algo. 1. Further,

the DOs need to agree on the hash function h() to be used in the



encoding scheme, and the number of unique first encodings to

be generated, n, where |Σ| ≤ n < |Σ|k . We discuss the choice of

n in more detail in the accuracy analysis in Sect. 4.2.

In line 1 in Algo. 2, each DO initializes the list of first character

encoded suffix trees,Tf . Next, in line 2, the algorithm iterates over

each encoded suffix tree T e
generated using our basic encoding

technique as described in Sect. 3.1. In line 3, we loop over each

encoded suffix E in T e
and get the corresponding unencoded

suffix x of E (line 4). In line 5, the function genEncFirstChar()
generates a new encoding, e ′

1
, for the first character in x using:

e ′
1
= h(x[1 : k] + r ) mod n. (1)

We show in Sect. 4 how this secure first character encoding

approach improves privacy against frequency attacks by the LU

while keeping the accuracy of sequence comparisons. In line 6,

the generated first character encoding, e ′
1
, is then inserted into

T e
by replacing the existing basic encoding of the first character

in an encoded suffix. The rest of the encoded characters in the

suffix stay unchanged. We illustrate this first character encoding

approach in the bottom row of Fig. 4 for three string pairs with

matching beginning, middle, or ending, respectively.

3.3 Privacy-Preserving String Matching
In this section, we describe how the LU can compute the length of

the longest common sub-string across two encoded suffix trees.

Extensions of the functions to compute the longest common

prefix (beginning), the longest common suffix (ending), and the

longest common middle are also discussed. These functions work

both on normal suffix trees, T , where edges are sub-strings,

as well as encoded suffix trees, T e
, where edges are character

based encodings as discussed before. This is because individual

encodings of characters in an edge are the same if their original

characters and their prefixes were the same.

Longest Common Sub-string: Let s1 and s2 be two strings

for which we want to compute the length of their longest com-

mon sub-string, and T e
s1 and T e

s2 are their respective encoded

suffix trees. For convenience, we adopt the usual functional-

programming syntax to represent suffix trees. For example, the

suffix tree in Fig. 2 is written as (where ϵ is the empty string):

(Tree ϵ [(Node 83321$), (Tree 3 [(Node 321$), (Node 21$)]),

(Node 21$), (Node 1$)]).

We now define a recursive algorithm to compute the length of

the longest common sub-string, lcs(s1, s2), given the suffix tree

representations of s1 and s2. In the following, size(s) gives the
length of string s , prefixes(s) gives the set of all prefixes of string s ,
lprefix(s1, s2) computes the length of the longest common prefix

of s1 and s2, and s1 |s2 removes s2 from the beginning of s1 (when
it exists).

lcs ((Node s1), (Node s2)) = lprefix(s1,s2)

lcs ((Tree s1 [i1,. . . , ia]), (Node s2)) =
if s2 ∈ prefixes(s1) then size(s2)
else if s1 ∈ prefixes (s2) then

size (s1) + max { lcs(s2 |s1, i1), . . ., lcs(s2 |s1, ia ) }
else 0

lcs ((Node s1), (Tree s2 [i1, . . ., ia])) =
lcs ((Tree s2 [i1, . . ., ia]), (Node s1))

lcs ((Tree s1 [i1, . . ., ia]), (Tree s2 [j1, . . ., jb ])) =
if s1 = s2 then

size(s1) + max{ lcs(i1, j1), lcs(i1, j2), . . .,
lcs(ia , jb−1), lcs(ia , jb )}

else if s1 ∈ prefixes(s2) then
size(s1) + max { lcs ((Tree s2 |s1 [j1, . . ., jb ]), i1), . . .,

lcs ((Tree s2 |s1 [j1, . . ., jb ]), ia ) }
else if s2 ∈ prefixes(s1) then

size(s2) + max{ lcs ((Tree s1 |s2 [i1, . . ., ia]), j1), · · · ,
lcs ((Tree s1 |s2 [i1, . . ., ia]), jb ) }

else 0

Longest Common Suffix: The problem of determining whether

two strings represented by their encoded suffix trees share a

common suffix is straightforward to compute. In fact, we can do

better and compute the length of longest common suffix of two

strings, when one exists, via a simple modification of the lcs()
function above by replacing the base case by:

lcs((Node s1), (Node s2)) = if (s1 = s2) then v + size(s1) else 0

Here, v is some arbitrary number that is larger than the longest

string in the database, such as v = 999. A pair of encoded suffix

trees have a common suffix if the above modified function takes

the form v + l , where l is the length of that longest common

suffix. In particular, if the returned value is less than v , then the

two strings do not share a suffix.

Longest Common Prefix: The longest common prefix of two

strings represented by encoded suffix trees can be computed by

traversing the longest suffix (path) in each tree and comparing

them encoding by encoding to find the longest match [1].

Longest Common Middle: The problem of finding the longest

common middle of two strings represented by encoded suffix

trees can be computed easily using the above algorithms: the

lcs() function must return a positive value, and there cannot be

a common prefix or a common suffix between the two encoded

suffix trees.

String Similarity: To calculate a similarity between two strings

represented by their encoded suffix trees, we use lcs() as described
above, and then calculate a normalized similarity, simlcs , as:

simlcs (s1, s2) =
lcs(s1, s2)

max(l1, l2)
, (2)

where l1 = |s1 | and l2 = |s2 | are the lengths of strings s1 and

s2, respectively. The LU can calculate l1 and l2 from the longest

suffixes of the corresponding encoded trees, T e
s1 and T e

s2 , respec-

tively. The similarity is normalized such that 0 ≤ simlcs ≤ 1,

where simlcs = 0 means two strings have no sub-string of at

least length m in common, simlcs = 1 means two strings are

the same, and a value of simlcs means they have a sub-string of

at leastm characters in common. Also, it is important to note

that in the event of using the secure first character encoding

scheme upon suffix trees we can only calculate lcs() of a certain
minimum length k , wherem ≥ k .

4 ANALYSIS OF OUR PROTOCOL
We now analyze our protocol in terms of complexity, accuracy,

and privacy. We assume each database owner (DO) has a database

D containing |D| records each consisting of a string s , where we
assume the average length of these strings is l . We also assume

all parties participating in the protocol are directly connected to

each other through a secure communication channel.

4.1 Complexity Analysis
We calculate the computational complexities for each step of

our protocol shown in Fig. 1. As described in Sect. 3.1, we use

Ukkonen’s algorithm [26] to construct the suffix tree for each



string value s ∈ D which is of linear complexity in the length

l = |s | of s . Hence the generation of a suffix tree for all string

values in D is of O(|D| · l) complexity. Assuming l suffixes can

be generated for each string s , there can be at most 2l − 1 edges

in a suffix tree which are (1) the number of paths leading to the

l leaves, plus (2) the number of edges leading to internal nodes

(≤ l −1). The worst case occurs when each character of a string is

different, such as ‘12345’, leading to l suffixes, one each of length

1 to l , and a total of l(l + 1)/2 characters to be encoded.

By assuming each hash operation on a character of s is ofO(1)
complexity, then the encoding of all paths in a suffix tree is of

O(l2) worst-case complexity. Hence the overall complexity of

encoding all suffix trees in D (as well as sending them to the LU),

each with l suffixes, isO(|D| · l2). As detailed in Sect. 3.2, the first

character encoding is applied on each suffix in all encoded suffix

trees which is of O(|D| · l) complexity for all strings in D.

For the matching operations performed by the LU, in Sect. 3.3

we have provided recursive functions for computing lcs() and
other related operations. In practice, these recursive functions

can be implemented either as a breadth-first or a depth-first

search algorithm, whichever is more efficient [26].

The comparisons of encodings (hash values) instead of sub-

strings will add a constant time to their time complexities. Let us

assume two encoded suffix trees T e
s1 and T e

s2 of strings s1 and s2,
and each containing l suffixes, respectively. To check if any of the

suffixes of s1 matches with any suffixes in s2, a naive approach
requires a traversal through each path (suffix) in T e

s1 for each

path in T e
s2 , resulting in a complexity of O(l2).

However, work by Babenko and Starikovskaya [1] has shown

that the longest common sub-string between two strings can be

calculated in linear time,O(l), when sorted suffix arrays are used

(assumingO(l× log l) for sorting) to efficiently obtain the longest

common prefixes. In our implementation, evaluated experimen-

tally in Sect. 5, we employ this efficient matching approach.

4.2 Accuracy Analysis
We first show that running the lcs() function defined in Sect. 3.3

on basic encoded suffix trees as described in Sect. 3.1 gives the

same result as running lcs() on regular suffix trees with high

probability. To see this, note that all we are doing is replacing

operations like s1 = s2 and s1 ∈ prefixes(s2) in lcs() with the

corresponding operations on the encoded characters.

Basic Chained Hash Encoding: We can only get errors in the

longest common sub-string algorithm if there are hash collisions

that map different characters to the same encoded value. In the

case when the hash function h() is SHA256 [22], for example, the

probability of a hash collision in a set of w strings is approxi-

mately
1

2
(w/2128)2 [27]. The probability of an incorrect longest

common sub-string of length l is thus upper-bounded by:

2
−l

l∏
i=1

(
|Σ|l

2
128

)
2

,

which decreases rapidly to zero with increasing l .

First Character Encoding:Consider next the setting of running
the lcs() function on encoded suffix trees with the first character

encoding as described in Sect. 3.2. As before, we can get errors

in the longest common sub-string computation if there are hash

collisions in the encoded characters. Note that in the encoding

scheme from Sect. 3.2 only the first character of each suffix is

changed while the remaining characters continue to be encoded

in the chained hash approach described in Sect. 3.1. Consider

two suffixes x1x2 . . . xl1 and y1y2 . . .yl2 where x1 , y1. Let us
also assume that we use k = 2 in calling Algo. 2. For small n
(we discuss the choice of n in more detail below), there is a good

chance that when using Eqn. (1) it holds

h(x1x2 + r ) ≡ h(y1y2 + r ) mod n,

resulting in an incorrect match of the encodings of x1 and y1.
There are now two cases to consider: x2 = y2 and x2 , y2. In both
cases, the basic encoding of x2 andy2 given byh(x2+h(x1+r )+r )
and h(y2 + h(y1 + r ) + r ) will not match with high probability

when h() is SHA256, since x1 , y1 in the first case and x2 , y2 in
the second case. The argument holds more generally for arbitrary

k > 1, which means the computation of the longest common sub-

string of length at least k would be correct with high probability,

with the error (collision) probability upper-bounded by:

hc(n, |Σ|,k) · 2−(k−1)
k∏
i=2

(
|Σ|k

2
128

)
2

,

where hc(n, |Σ|,k) is the probability of collision when hashing

|Σ|k possible suffixes into n possible values using Eqn. (1). For

most practical values of |Σ|, k , and n, we have hc(n, |Σ|,k) = 1.

Nevertheless, the error probability decreases rapidly to zero with

increasing k .
How to select the values of k and n used in Eqn. (1) depends

upon the size of the alphabet, |Σ|, from where strings are being

generated.

First of all, k must be larger than 1. To see why, assume k = 1

and consider two cases: n < |Σ| and n ≥ |Σ|. In the first case,

multiple input characters will be mapped to the same first char-

acter encoding. This can result in false matches of encoded suf-

fixes leading to inaccurate similarity results. In the second case,

n ≥ |Σ|, the first character encoding will generate one hash en-

coding per input character in Σ (assuming no hash collision). The

frequency distribution of the original first characters is there-

fore preserved in the frequency distribution of the first character

encodings computed using Eqn. (1). This will allow the LU to

conduct a frequency attack (as we discuss in more detail below)

by mapping encodings back to characters if the distribution of

these characters follow for example Benford’s Law [2]. Therefore

setting k = 1 results in either inaccurate lcs() calculations or
insecure character encodings.

We have thus established the need for 1 < k ≤ m, wherem
is the minimum length of lcs() we want to calculate. For any

such k , the value of n does not have an effect on the accuracy of

our approach. To see why, consider two strings s1 and s2. If they
agree on the first k characters, then the encoding of the first k
characters for s1 and s2 will be the same regardless of what n is.

If s1 and s2 do not have the same first k characters, then their

hash encodings will disagree at the first position where s1 and s2
disagree or earlier, again regardless of what n is.

Given the choice of n does not affect the accuracy of our

approach, should we simply set n = 1? The answer is no, and

the reason relates to privacy rather than accuracy. Note that the

LU is not given the value of k in our protocol. If n is too small

compared to |Σ|, it becomes easy for the LU to guess what k
is, and leakage of that information opens a (small but) possible

door for the LU to employ frequency attacks on the encoded

suffix trees it receives from the DOs. If n ≥ |Σ|k , the frequency
distribution of the original first k characters are preserved in

the distribution of the first character encodings computed using

Eqn. (1), again opening a door to frequency attacks by the LU.



From the above, we can conclude that we should have |Σ| ≤
n < |Σ|k . In practice, we set n = |Σ|, which we show empirically

to work well in Sect. 5 for a range of data sets.

4.3 Privacy Analysis
We assume the DOs and the LU follow the honest-but-curious

(HBC) adversary model without any collusion [14]. The HBC

model is commonly used in other PPRL and private string com-

parison protocols [30] because of its applicability to real scenarios.

In the HBC model each party in a protocol tries to learn as much

as possible about other parties’ data based on what it receives

from other parties, while following the protocol steps. We next

analyze the privacy of our approach in terms of security against

privacy attacks by a DO and the LU.

FrequencyAttacks by aDO:Weassume theDOs do not collude

with the LU. Though eachDO agrees upon the same hash function

and secret salt value r in the suffix tree encoding in Sect. 3.1, and

the number of first characters, k , in the first character encoding in
Sect. 3.2, neither of the DOs will learn the set of plain-text strings

of the other DOs. This is because the encoded suffix trees are not

shared between the DOs but only sent to the LU for comparisons.

Hence, a frequency attack by a DO upon the database of another

DO is impossible.

Dictionary and Frequency Attacks by the LU: Once the DOs
send their encoded suffix trees to the LU, the LU compares pairs of

trees to identify possible matching sub-strings encoded in these

trees. The LU can identify the character patterns based on the

encodings in the trees. This includes the number of hash values

that match between two trees and their positions. However, as

described in Sect. 3.1, each character in a suffix is encoded individ-

ually based on the previous character’s hash value concatenated

with the secret salt r . This chained hashing provides strong pri-

vacy against dictionary attacks because the LU cannot attack the

encoded suffix trees by generating its own encoded trees based

on a database of plain-text values without knowing the secret

salt r as used by the DOs to encoding their string databases.

However, when only the basic chained hash encoding de-

scribed in Sect. 3.1 is applied on each suffix, from the set of all

encoded suffix trees it receives the LU can conduct a frequency

analysis on the hash encodings that occur at certain positions in

the suffixes of the encoded trees. From these learned frequency

distributions the LU can try to re-identify which hash encoding

could correspond to a certain character in the alphabet Σ, as-
suming the LU knows the type of strings encoded in the suffix

trees. The success of such an attack by the LU depends on the fre-

quency distribution of characters and the availability of a similar

plain-text database to the LU [8].

From the longest suffixes in all trees the LU can learn the

length distribution of all encoded strings, and therefore guess

what type of information is encoded in these trees. For example,

if all trees encode strings of length 16 then these are likely credit

card numbers, while strings of length 9 could be UKmobile phone

numbers. One way to overcome this leakage of information is

for the DOs to pad their strings with characters that are not part

of the alphabet Σ before they are processed, where they need

to make sure each DO has their own set of extra characters to

prevent accidental matches of such added extra characters.

One important aspect of re-identification is however that the

LU needs to be able to identify every character in an encoded

string, because partial identifications might not provide useful

information. A partially identified telephone number of the form

‘?1??1??2??’, where ‘?’ means the digit is unknown, will unlikely

help the attacking LU to re-identify an individual. This is different

from attacks on names and addresses as conducted on PPRL [8,

17], where even a few identified q-grams can help re-identify a

person (identity disclosure). For example, if an attacker learns

that a name string contains three identified q-grams, and only

one rare name in a database contains these three q-grams, then

the attacker learns both the name and the individual with that

name [8]. This is because of the smaller domain of names and

addresses (even in large population databases there are commonly

only a few hundred thousand unique names [7]) compared to the

much larger domains for example of credit cards which is in the

order of 10
16
.

Assuming the LU does have access to a plain-text database

with a highly similar frequency distribution of string values, it

can mount a frequency attack whereby it concentrates on the first

character encoding in a suffix, because these encodings are all

based on the same secret salt value r (lines 11 and 13 in Algo. 1).

If there are distinct frequency patterns in a database of plain-text

strings then these will be reflected in a corresponding frequency

distribution of encodings and potentially allow the attacker to

re-identify certain individual characters in the encoded trees. We

discuss the success of such an attack under three scenarios:

1. Uniformly distributed characters: If we assume every char-

acter at every position is selected uniformly random from the

alphabet Σ with probability 1/|Σ|, then the LU has no frequency

information that can be exploited. This is because each encod-

ing at the beginning of each suffix of the encoded suffix trees

will occur with the same frequency. In such an ideal situation

our chained hash encoding approach will be secure from any

frequency based attack.

2. Value distribution follows a specific law: For a given encoded

suffix tree, the LU can identify the longest suffix and then the

first character in this suffix. The encoding of this first character

in a suffix only depends on its value and the secret salt value r
(unknown to the LU). However, in real scenarios the distribution

of the first character in values usually follows a specific distri-

bution law, such as Benford’s law [2] for telephone numbers or

Zipf’s law [33] for surnames. For example, by assuming the input

strings contain digits only then it is possible that the first digits

in these strings follow Benford’s law, which states that in many

naturally occurring collections of numerical values, the leading

first digit is likely to be small (i.e. 1 occurs more often than 2, 2

more often than 3, and so on).

The LU can perform a frequency analysis of the hash encodings

that correspond to the first position of a string across all encoded

suffix trees. This potentially allows the LU to learn the first digit

in each string. Additionally, each repeat of the first digit later in

a string (which means the digit is again encoded in the top level

of a suffix tree with the secret salt value r ) will be the same hash

encoding. Therefore, the LU can learn all positions in a string

where the first digit occurs. Further, due to the basic chained hash

encoding approach, if there is a correlation between occurrences

of the second character based on the first character in a string,

the LU will be able to identify the second character in suffixes

using a frequency analysis.

3. Specific patterns at beginning of strings: Apart from the dis-

tribution of the first character, certain prefixes in string values

can occur frequently in a database leading to distinct patterns in

strings. For example, in international telephone numbers certain

country codes might be more frequent than others (‘+44’ for the



UK likely occurs more often than ‘+354’ for Iceland). A similar

frequency analysis as discussed above can be applied on the en-

coded suffix trees, where the LU will be able to identify those

sequences at the beginning of strings that occur more often than

others. This will however only provide the LU with information

about frequent sub-strings at the beginning of strings, which by

themselves will not allow the identification of all characters in a

string nor the actual re-identification of individuals.

As we discussed in the first scenario above, if the characters

of the strings that are encoded in suffix trees follows a uniform

distribution it is highly unlikely for the LU to be able to identify

all characters (or digits) in a string with high accuracy. As we

discussed in Sect. 3.2, if such a uniform distribution occurs in the

databases to be matched then the DOs do not need to perform

the extra first character encoding outlined in Algo. 2.

However, the first character encoding technique described in

Sect. 3.2 provides privacy of string values encoded in suffix trees

against a frequency attack by the LU under the second and third

scenarios discussed above. As we outlined in Algo. 2, the DOs

need to agree on the number of characters, k > 1, to be used for

the re-hashing of the first character. In the first character encod-

ing process, a higher value for k results in more distinct hash

values generated, as we discussed in Sect 4.2 above. Further, the

modulo operation ensures the resulting encodings are uniformly

distributed within the range of n. If we set n = |Σ| then |Σ|k > n
if k > 1. Further, we add a secret salt value r in the first character

encoding scheme. The use of r provides strong privacy against

dictionary attacks on first digits encodings. This is because the

LU is not capable of identifying the correct encoding that has

been applied on different first characters without knowing r that
is used by the DOs.

As we show in our experiments below, each hash encoding

of the first characters of the encoded suffix trees will occur with

nearly the same frequency, especially with larger values ofk , even
if the unencoded first characters follow a certain distribution, for

example Benford’s law. This assures that the LU will not be able

to exploit any frequency information about the first characters in

strings and therefore cannot directly map hash encodings to their

corresponding plain-text values. This makes our approach secure

from any frequency based attacks. In Sect. 5 we experimentally

evaluate how frequency distributions of the first characters of

strings of different data types change with different k .

Similarity graph attack by the LU:Aswe described in Sect. 3.3,
the LU calculates the length of the longest common suffix be-

tween each pair of encoded suffix trees. Once all encoded suffix

tree pairs are compared the LU can construct a similarity graph

where each encoded suffix tree becomes a vertex while the edges

between these vertices represent the length of the longest com-

mon suffix between a pair of encoded suffix trees.

Once such a graph is generated, the LU can construct a similar

graph based on a publicly available plain-text database that has

similar characteristics as the encoded databases. Then the LU can

conduct a sub-graph matching [10] between the two graphs to

identify possible plain-text values that correspond to the encoded

suffix trees. One possible way of carrying out such matching

would be to identify any sub-graphs that are unique and can

obviously be identified based on the vertices that have a unique

set of edges in the sub-graph. If such unique sub-graphs can be

found then the plain-text values that can be mapped to vertices

in the encoded suffix tree graph can be identified with high

probability.

Such an attack by the LU requires the accessibility to a plain-

text database that has a highly similar distribution of characters

in string values as those in the encoded database. Though such

attacks are limited in the literature [9], there are several counter-

measures that the DOs can apply on their databases before encod-

ing and sending them to the LU, including applying blocking [6]

and block-specific salt values, adding faked values into their

databases, or employing several LUs for the comparison of en-

coded suffix trees. We aim to investigate such counter-measures

as future work.

5 EXPERIMENTAL EVALUATION
We used both synthetic as well as real data of different types to

evaluate our novel privacy-preserving string matching approach.

We used the Mockaroo data generator (https://www.mockaroo.

com) to create 10,000 stringswith unique credit card and IBAN (In-

ternational Bank Account Number) numbers. From these strings

we then generated corrupted versions by randomly replacing be-

tween 1 and 10 characters from the same alphabet (digits only for

credit card, and digits and letters for IBAN), resulting in 10,000

pairs of credit card and IBAN numbers.

We extracted two different data sets with telephone numbers,

surnames, city names, and street addresses from the North Car-

olina Voter Registration (NCVR) database (https://dl.ncsbe.gov),

where the first data sets were from a snapshot of NCVR from

2015 and the second data sets from a snapshot of NCVR from

2019. We paired records from these two data sets based on the cor-

responding voter identifiers, ensuring we only had pairs where

the strings were not the same. We then selected 10,000 pairs of

strings for each of the four attribute types.

Overall, our data sets consist of strings of different types (digits

only, letters only, or mixed) and of different lengths. They reflect

the types of data commonly used in applications such PPRLwhere

sensitive databases are to be linked across organizations [30].

We implemented our approach using Python 2.7 and ran

experiments on a server with 128 GBytes of memory and 2.4

GHz CPUs running Ubuntu 16.04. To facilitate repeatability,

the data sets and our programs are freely available at: https:

//dmm.anu.edu.au/ppseqmatch/.

We compared our approach with Bloom filter (BF) encoding

as commonly used in PPRL [23, 30]. The BFs were generated

by converting each string into a q-gram set with q = 2, and by

then hashing each q-gram set into one BF of length 1,000 bits

(a commonly used BF length for PPRL [23]) per q-gram set. We

used different optimal numbers of hash functions kopt that lead
to the smallest number of false positives [28]: 46 for credit card

and 30 for IBAN numbers, 116 for surnames, 87 for city names,

36 for street addresses, and 77 for telephone numbers.

As a second baseline method we used a tabulation hashing

based approach for PPRL recently proposed by Smith [25], where

again q-gram sets are hashed into bit arrays using a tabulation

approach which provides min-hashing properties [19]. This ap-

proach was shown to calculate more accurate similarities. We

used 8 tabulation keys each of 64 bits length to generate one bit

array of length 1,000 bits to encode one string.

There are many different techniques to calculate similarities

between strings [6]. Because of the encodings used in the three

methods we compare, we need to employ different such string

matching techniques. We are however not interested in the abso-

lute similarities calculated between two strings; rather we want

to know if for the same string pair the same similarity method

https://www.mockaroo.com
https://www.mockaroo.com
https://dl.ncsbe.gov
https://dmm.anu.edu.au/ppseqmatch/
https://dmm.anu.edu.au/ppseqmatch/
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Figure 5: Similarity plots of Bloom filter (BF) encoding [23] (left) and tabulation based hashing (TabHash) [25] encoding
(second left), basic encoded suffix trees (second right), and secure first character encoded suffix trees withm= 2, k = 2, and
n= |Σ| (right). As can be seen, both our suffix tree based encoding methods provide accurate similarity calculations, while
BF and TabHash encoding can lead to substantially changed similarities even between very similar strings.

applied on the unencoded and the encoded strings gives the same

similarity value or not. For our suffix tree based approach, as

described in Sect. 3, we calculated the longest common sub-string

similarity using Eqn. (2) on both unencoded and encoded suffix

trees (both the basic and first character encoding described in

Sects. 3.3 and 3.2, respectively). For BF encoding we calculated

the Dice coefficient similarity on the q-gram sets and on BFs [23],

while for tabulation based hashing we calculated the Jaccard

similarity on q-gram sets and on the bit arrays generated by this

encoding technique [25].

In Fig. 5 we show scatter plots where the horizontal axis shows

unencoded similarities and the vertical axis shows the corre-

sponding encoded similarities. A pair of strings where both the

unencoded and the encoded similarities are the same will gener-

ate a point in a scatter plot that is shown on the diagonal, while

any point off the diagonal shows differences in the calculated

similarities between unencoded and encoded strings. An accurate

(exact) privacy-preserving string similarity measure should only

result in pairs of similarities that are the same and are therefore

located on the diagonal.

As can be seen from Fig. 5, the similarities calculated on suffix

trees from both our encoding approaches always result in the

same similarities as calculated from unencoded suffix trees. This

shows our approach does accurately calculate the longest com-

mon sub-string similarities on encoded suffix trees in a privacy-

preserving manner where the DOs do not need to reveal their
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Figure 6: Frequency distributions of the first characters in strings with different k from 2 (left) to 5 (right). The red lines
show the original first character distributions while the blue bars show the distributions of the first character encodings,
with n= |Σ|. As can be seen, as k increases the distributions of the first character encodings become more uniform.

sensitive plain-text strings to any other party. As can also be

seen, BF based Dice coefficient similarities can be much higher

than their corresponding q-gram based similarities especially for

string pairs that have only few q-grams in common. This is be-

cause BF encoding introduces collisions where different q-grams

are hashed to the same bit positions. Similarly, tabulation based

hashing leads to inaccurate similarities being calculated, where

this approach leads to encoded similarities that are both above

and below the actual Jaccard similarities calculated on unencoded

q-gram sets.

These issues will affect the similarities calculated between

strings for both BF encoding and tabulation based hashing, and

therefore affect the quality of matched strings and the resulting

quality of any follow-up analysis or investigation that is based

on these matched strings. Of serious concern would be if wrong

high BF or tabulation hashing similarities lead to falsely matched

individuals in the context of fraud detection or national security.

In Fig. 6, we show the frequency distributions of the first char-

acters of strings between the original first character distributions

and the encoded first characters after our first character encod-

ing from Sect. 3.2 has been applied. As can be seen, our first

character encoding method results in more uniform or signifi-

cantly changed frequency distributions of the first characters in

strings, where these distributions depend upon the value of k ,
the number of first characters to use in the encoding. As we dis-

cussed in Sect. 4.2, the larger k the more uniform the frequency

distributions of these first character encodings become.
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Figure 7: Comparison of run-times for encoding (left) and string matching (right) between our approach, Bloom filters,
and tabulation based hashing (TabHash). Shown are average times for encoding one string and matching one string pair.

Finally, in Fig. 7 we show run-times for encoding andmatching.

As can be seen, our approach to convert strings into suffix trees

and encoding them using chained hash encoding, as well as

re-hashing the first characters, is faster or equally fast as BF

encoding. Both our encoding approach and BF encoding are

much faster than tabulation hashing which requires significantly

more hash encodings. On the other hand, our encoding approach

is around one to almost two magnitudes slower in the string

matching phase than the very efficient bit array based baseline

methods. This is expected because our approach requires the

individual comparison of hash codes for each position in a suffix

compared to the highly efficient single bit-wise operations on bit

arrays. We believe this is a price worth paying given the accurate

and privacy-preserving longest common sub-string similarities

our method can calculate.

6 CONCLUSIONS AND FUTUREWORK
We have presented a novel privacy-preserving string matching

technique based on suffix trees that allows the accurate and ef-

ficient calculation of longest common sub-string based string

similarities. Our approach encodes strings into suffix trees such

that no re-identification of the full input string is possible, and

neither can a frequency attack be mounted on individual charac-

ter encodings. The experimental evaluation has shown that our

approach results in the same string similarities as on unencoded

suffix trees, while commonly used Bloom filter encoding and

tabulation based hashing will lead to potentially much higher or

lower similarities between encoded strings.

As future work we aim to conduct a more formal analysis of

the privacy of our approach and investigate different counter-

measures that can be applied upon our approach to reduce the

amount of information that can be learned by an attacker by

conducting a graph similarity analysis.
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