Accurate and Efficient Suffix Tree Based Privacy-Preserving
String Matching

Sirintra Vaiwsri, Thilina Ranbaduge, Peter Christen, and Kee Siong Ng
Research School of Computer Science, The Australian National University
Canberra ACT 2600, Australia
{sirintra.vaiwsri, thilina.ranbaduge,peter.christen,keesiong.ng}@anu.edu.au

ABSTRACT

The task of calculating similarities between strings held by differ-
ent organizations without revealing these strings is an increas-
ingly important problem in areas such as health informatics,
national censuses, genomics, and fraud detection. Most exist-
ing privacy-preserving string comparison functions are either
based on comparing sets of encoded character q-grams, allow
only exact matching of encrypted strings, or they are aimed at
long genomic sequences that have a small alphabet. The set-
based privacy-preserving similarity functions commonly used
to compare name and address strings in the context of privacy-
preserving record linkage do not take the positions of sub-strings
into account. As a result, two very different strings can poten-
tially be considered as an exact match leading to wrongly linked
records. Existing set-based techniques also cannot identify the
length of the longest common sub-string across two strings. In
this paper we propose a new approach for accurate and efficient
privacy-preserving string matching based on suffix trees that are
encoded using chained hashing. We incorporate a hashing based
encoding technique upon the encoded suffixes to improve pri-
vacy against frequency attacks such as those exploiting Benford’s
law. Our approach allows various operations to be performed
without the strings to be compared being revealed: the length
of the longest common sub-string, do two strings have the same
beginning, middle or end, and the longest common sub-string
similarity between two strings. These functions allow a more
accurate comparison of, for example, bank account, credit card,
or telephone numbers, which cannot be compared appropriately
with existing privacy-preserving string matching techniques. Our
evaluation on several data sets with different types of strings
validates the privacy and accuracy of our proposed approach.

KEYWORDS

Secure hash encoding, chained hashing, string comparison, se-
quence matching, privacy-preserving record linkage.

1 INTRODUCTION

In application domains such as banking, health, bioinformatics,
and national security, it has become an increasingly important
aspect in decision making activities to integrate information from
multiple data sources. Integrating databases can help to identify
and link similar records that correspond to the same entity across
different databases, a task known as record linkage [6]. This in
turn can facilitate efficient and effective data analysis not possible
on an individual database.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN XXX-X-XXXXX-XXX-X on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Table 1: Example string pairs from a real US voter data-
base [7] that have the same set of bigrams (g = 2) and there-
fore Jaccard or Dice similarities of 1.0 (same strings), but
low edit distance similarities [6].

Attribute First string Second string Bigram set E.dlt. d1§t.

similarity
Zipcode 27828 28278 (27, 28, 78, 82) 0.600
First name amira ramir (am, ir, mi, ra) 0.600
First name geroge roger (er, ge, og, ro) 0.500
First name jeane jeaneane (an, ea, je, ne) 0.625
Last name avera raver (av, er, ra, ve) 0.600
Last name einstein steins (e, in, ns, st, te) 0.500
Last name gering ringer (er, ge, in, ng, ri) 0.333

Increasingly, record linkage needs to be conducted across
databases held by different organizations [30], where the comple-
mentary information held by these organizations can for example
help identify patient groups that are susceptible to certain ad-
verse drug reactions (linking doctors, hospital, and pharmacy
databases), or detect welfare cheats (linking taxation with em-
ployment and social security databases). However, in many of
these applications the databases to be linked contain private or
confidential information which cannot be shared between the
organizations involved in a linkage [30]. Similarly, the compar-
ison of genomic data often raises privacy concern as genome
sequences might contain proprietary information and because
such data are highly confidential in nature [24].

Privacy-preserving record linkage (PPRL) [29] research aims to
develop techniques that can link databases that contain sensi-
tive information without the need of any private or confidential
information to be shared between the organizations involved
in the linkage process. In PPRL, the attribute values of records
are usually encoded in some form before they are being com-
pared. Any encoding used must ensure that similarities can still
be calculated between encoded values without the need of shar-
ing the corresponding plain-text attribute values [29]. PPRL is
conducted in such a way that only limited information about the
record pairs classified as matches is revealed to the participating
organizations. The techniques used in PPRL must guarantee no
participating party, nor any external party, can compromise the
privacy of the entities in the databases that are linked.

Popular techniques to allow privacy-preserving string com-
parison are based on converting strings into sets of q-grams
(sub-strings of length g characters) and encoding these sets for
example into Bloom filters [23]. Bloom filters are bit arrays where
multiple independent hash functions are used to encode the el-
ements of a set by setting those bit positions to 1 that are hit
by a hash function. Bloom filters can be compared using set-
based similarity functions such as the Dice co-efficient [6]. It
has been shown that Bloom filter based PPRL is both efficient
and it can achieve accurate linkage results comparable to non
privacy-preserving record linkage [23].

Table 2: Overview of related privacy-preserving string matching techniques, where we show the complexity for encoding
and matching one string. [is the string length, |X| the size of the alphabet, h the number of hash functions used, b the
length of a Bloom filter or bit array, and ¢ the number of hash tables.

Methods / Authors Datatype Matchtype Encoding complexity = Matching complexity Application
Chained hash encoded suffix tree (our work) String Exact o(l?) O(l xlog 1) PPRL
Bloom filter (Schnell et al. [23]) String Approximate O(Ix h) O(b) PPRL
Tabulation hashing (Smith [25]) String Approximate O(l xtxh) O(b) PPRL
Bloom filter tree (Bezawada et al. [3]) String Exact O(I> x h) O(I xlog 1) Cloud computing
Symmetric encrypted suffix tree (Chase and Shen [5]) String Exact O(l x b) O(l x b) Cloud computing
Oblivious RAM suffix array (Moataz and Blass [16]) String Exact O(l xlog 1) O(l +1log 1) Cloud computing
Burrows-Wheeler transformation (Shimizu et al. [24] ~ Genomes Exact O(Ix A/l x|Z]) o(I? x |2]) Genomics

One drawback of set-based comparisons is however that the
sequence of characters of a string is lost when it is converted
into a g-gram set. As shown in Table 1, two different strings can
result in the same g-gram set and thus the same encoded Bloom
filter, and therefore can potentially identify the strings to be the
same. This can lead to falsely matched record pairs because of
too high similarities between rather different string values [6].

A second drawback of set-based string comparison functions
is that they only allow the calculation of an overall similarity
between two strings. However, identifying the longest common
sub-string between two strings can be crucial in certain applica-
tions. For example, Financial Intelligence Units around the world,
including FinCEN (US), the National Crime Agency (UK), and
AUSTRAC (Australia), collect financial information to help iden-
tify tax evasion, money laundering, and terrorism financing. This
involves linking records from different reporting entities such
as banks, casinos, and money remitters such as Western Union,
and requires finding matches in a privacy-preserving way where
bank identifiers such as SWIFT/BIC codes need to be paired with
bank account numbers. Sub-string matching is crucial because
leading zeros are often omitted, such that ‘DK54000074491162’
would be the same account as ‘DK5474491162’.

The likelihood of two different strings sharing the same or
a highly similar q-gram set increases if the size of the alphabet
(the number of unique characters) used to generate the strings
becomes smaller, because less unique g-grams can be generated.
Therefore, strings made from digits only (alphabet of size 10) will
more likely result in increased q-gram set similarities compared
to strings that contain letters (alphabet of size 26).

Contributions: In this paper we propose a novel approach
to privacy-preserving string matching that is based on secure
chained hash encoded suffix trees. In our approach each input
string in a database is first converted into a suffix tree and then
encoded by the database owner (DO). These encoded suffix trees
are then sent to a linkage unit (LU) [30]. The LU compares the
encoded suffix trees it receives from two or more DOs to identify
those pairs of trees that correspond to two strings that have (1) a
sub-string of a certain minimum length in common, (2) a certain
minimum similarity, (3) the same beginning, (4) same middle, or
(5) same ending. The LU however cannot learn the actual input
strings. To improve the privacy against frequency attacks, such as
exploiting Benford’s law [2], we propose a hash based encoding
for each suffix which does not allow the LU to learn the actual
input strings. We analyze the complexity, accuracy, as well as
privacy characteristics of our approach, and we experimentally
evaluate the approach using several data sets with different string
types (only letters, only digits, and mixed) and compare the ap-
proach to Bloom filter encoding [23] and tabulation hashing [25]
based privacy-preserving string matching.

2 RELATED WORK

The privacy-preserving comparison of values (such as strings
or numbers) across databases is a common problem for many
application domains, and therefore a variety of techniques and
algorithms have been proposed, as illustrated in Table 2.

String matching is often used in a PPRL context where en-
coded values of quasi-identifying attributes of individuals (such
as their names and addresses) need to be compared across two
or more databases to link records [30]. Bloom filter (BF) encod-
ing is widely used in PPRL because it is efficient and supports
approximate matching of both strings [23, 30] and numerical
values [11, 28]. However, BFs cannot be used to identify longest
common sub-strings, because they require values to be converted
into q-gram sets whereby positional information is lost. Further-
more, the hashing functions used in BF encoding likely lead to
collisions (several q-grams hashed to the same bit position) and
therefore the similarities between BFs are approximations and
can be higher than the actual similarity between their correspond-
ing q-gram sets, as we experimentally show in Sect. 5.

Privacy-preserving matching of sequences is increasingly re-
quired in bioinformatics applications where the aim is to find the
longest matching sub-sequences for a query sequence in large
genome databases [24, 31]. The algorithms used in such appli-
cations often have high computational complexities. Shimizu
et al. [24] recently proposed an approach for searching simi-
lar string patterns in a genome database. The approach uses a
recursive oblivious transfer protocol based on additive homo-
morphic encryption to query sequences in the genome database
while ensuring each query does not lead to the identification
of other similar strings in the database. However, this approach
does not scale to queries of longer sequences because they incur
high computational and communication costs due to the complex
cryptographic functions used [24].

Suffix trees [15] are often used in bioinformatics applications
to search for patterns in genome or protein sequences [32]. A suf-
fix tree allows searching for a given pattern with a linear complex-
ity in terms of the length of the query string being searched [15].
Ukkonen [26] showed how suffix trees can be used for string
matching, however his approach required more space to hold a
suffix tree than the original string collection.

Chan et al. [4] proposed pruning techniques to reduce the
size of suffix trees generated from large string databases. Their
approach aims to improve the querying of strings by pruning
infrequent sub-string patterns and duplicate paths in a tree. How-
ever, pruning shorter sub-strings results in some string patterns
not being matched. Similarly, Patil et al. [18] proposed a method
that combines length and position filtering techniques for prun-
ing suffix trees and inverted lists of q-grams which resulted in a
reduction of the query time in the matching process.

Kimura et al. [12] proposed a string matching approach based
on suffix and longest common prefix arrays of q-grams. In their
approach, sub-strings in the database are extracted, where sub-
strings with frequencies higher than a given threshold and of a
minimum length are used as indexes for sub-strings matching.
The processing time of this approach crucially depends upon the
frequency and length threshold parameters used, where longer
minimum string length will reduce the success of sub-string
matching.

Babenko and Starikovskaya [1] proposed two algorithms that
use suffix arrays combined with longest common prefix arrays
to facilitate longest common sub-string searching in suffix trees.
These algorithms merge the two strings to be compared using a
special character ($) and employ either a sliding window or tree
based approach over the sorted arrays, achieving a linear time
complexity in the lengths of the two strings being compared.

Wang et al. [32] recently proposed a string matching protocol
based on suffix trees and edit distance constraints. This approach
finds all similar sub-strings for a given query in a collection of
strings, such that their edit distance with the query is within a
given threshold. To improve the efficiency of suffix tree genera-
tion the approach employs the Burrows-Wheeler Transformation
to index the string collection. Query strings are first partitioned
into segments where each segment is queried to find exactly
matching sub-strings to generate a group of candidate strings.
Due to the partitioning of query strings some segments can how-
ever result in higher edit distances which potentially can lead to
missed matching strings.

A suffix-tree based method to find the shortest unique sub-
string query for constant time online applications was proposed
by Pei et al. [20]. They employed suffix trees as they can be used
to get left-bound shortest unique sub-strings in constant time
which helps to improve the efficiency of online query application.

The use of suffix trees in privacy-preserving sub-string match-
ing has been investigated by Chase and Shen [5]. Their proposed
approach constructs a queryable encryption scheme for finding
all occurrences of a query string in a long encrypted string stored
on a server. The approach uses symmetric encryption over a
generated suffix tree to identify all matching sub-string patterns.
However, this approach reveals information about user queries
to the server which compromises the privacy of a user’s data.
Moataz and Blass [16] investigated the applicability of oblivious
suffix tree search over encrypted string data. Their approach
provides privacy on the user search patterns from the server but
it incurs large communication overhead for each query.

Bezawada et al. [3] proposed a protocol based on a pattern
aware secure search tree where each tree node contains a Bloom
filter that encodes a set of the encrypted strings. The approach is
aimed at cloud environments for two parties to compare strings
securely, where the parties only learn if their strings are matched
but not the actual matching sub-strings. This approach therefore
does not allow the privacy-preserving identification of longest
common sub-strings.

The approaches discussed above mostly allow a user to query
a database of strings or sequences for similar patterns, while
the problem we aim to address involves the identification of
similar sub-strings in two databases owned by different parties
without each party having to reveal their input strings. In contrast
to most existing techniques, our approach allows the efficient
and accurate privacy-preserving comparison of strings from two
databases to identify those string pairs that share a sub-string
with a certain minimum length.

Exchange parameter settings and secret salt value

Database |! Encoded ! Linkage ! Encoded || Database
Owner A | !suffix trees; Unit isuffix trees| | Owner B | !
— —_— |
|| Generate ‘ Matching ; Matching functions { Matching [Generate ‘
i fesults 1) Longest common sub-string | results i} qffix trees |!

i|4) Longest common middle

]
fix tr
' 1| 2) Longest common suffix '
i : !| 3) Longest common prefix :
Encode |: Encode |:
ffix trees suffix trees |}

‘ 5) String similarity

Figure 1: Overview of our proposed encoded suffix tree
based privacy-preserving string matching protocol.

3 PRIVACY-PRESERVING SUFFIX TREE
MATCHING

As outlined in Fig. 1, we now describe our protocol to match
strings across two databases in a privacy-preserving way using
encoded suffix trees. We assume two database owners (DOs),
each having a database of sensitive private string values they
want to compare with each other without revealing their actual
strings. As in common with many other PPRL approaches [30],
our protocol makes use of a linkage unit (LU), a third party that
will conduct the comparison of strings as converted into encoded
suffix trees by the two DOs. As we discuss in more detail in the
privacy analysis in Sect. 4.3, we assume the DOs and the LU are
semi-honest and follow the honest-but-curious (HBC) adversary
model without any collusion [14]. We now define the problem
we aim to solve more formally:

DEF. 1. Privacy-preserving string matching: Without loss
of generality, we assume two DOs with their respective databases,
Dy and Dp, that wish to identify, through the use of a LU, all pairs
of matching strings (s1, s2), with s; € D4 and s € Dp, such that
les(s1, s2) = m, where lcs() is a function that returns the longest
common sub-string, and m > 1 is the minimum length required
of a matching sub-string for s; and sz to be included in the set
of matching string pairs. The two DOs do not wish to reveal their
actual strings with each other nor with any other party, and the
only information the LU can learn are the lengths and positions of
the matching sub-strings but not their actual characters.

As we describe in Sect. 3.3, our encoding approach can also
identify if two strings have the same beginning, middle, or end.

For the remainder of this paper we use the following notation.
We assume all strings s are sequences of characters from a given
alphabet %, such as digits, letters, special characters, or a mix of
them, where s = 3* is a string of arbitrary length and I = [s] is
the length of a string. We use $ to denote the special terminal
character that indicates the end of a string, where $ ¢ ¥ and $ is
not included in the length of a string (for example, |‘123$’| = 3).
Each string s; € Dy and sp € Dp is then converted into one
suffix tree, 7, and 75,, respectively, as we describe below.

To encode the sub-strings in all edges of a suffix tree 75, we
use a secure hash function, denoted by h(), such as SHA256 [22],
resulting in a corresponding encoded tree 7;°. We use a secret
salt value, r, that is only known to the DOs, for all encodings to
prevent dictionary attacks by the LU. We next describe how we
generate and encode suffix trees, in Sect. 3.2 propose a method
to overcome frequency attacks by special encoding of the first
characters in suffixes, and in Sect. 3.3 discuss how we calculate the
longest common sub-string, as well as other matching functions,
between encoded suffix trees in a privacy-preserving way.

Figure 2: Example suffix tree generated from string ‘83321,
where $ is used to indicate the end of a suffix.

3.1 Suffix Tree Construction and Encoding

We follow Ukkonen’s algorithm [26] to construct one suffix tree
for each string s; € D4 and s; € Dp. As an example, Fig. 2 shows
the suffix tree generated from string ‘83321". Note that we do not
store the terminal character $ in any edges of a suffix tree.

Following Def. 1, if one is only interested in matching sub-
strings of minimum length m > 1, then only suffixes of length m
and longer need to be included in a suffix tree because suffixes
shorter than m can never be part of a longest common suffix with
a minimum length of m. For example, if m = 3, then the suffixes
‘1$’ and ‘21$’ in Fig. 2 will not be included.

Encoding a tree to allow the calculation of longest common
sub-strings with other trees requires an encoding that allows
privacy-preserving matching of individual characters in a sub-
string without revealing these characters. However, the LU needs
to know which encoded characters are matching at what posi-
tions (i.e. correspond to the same unencoded character) in order
to be able to identify the longest common sub-string.

Since we assume the LU is semi-honest [14], it can attempt to
re-identify the original values that were encoded into the encoded
suffix trees it receives from the DOs. One common approach to
attack such encodings are frequency attacks [8, 13, 17], where
frequent encodings are mapped to frequent plain-text values or
frequent g-grams. A character based encoding, as we require in
our approach, will potentially allow a frequency analysis of hash
codes and thus likely lead to information leakage.

To overcome such attacks, we propose a chained hash en-
coding approach inspired by Blockchain [21] combined with
salting [17]. The salt, r, is a secret string value agreed by the DOs
that they do not share with the LU or any other party.

Algorithm 1 outlines the steps we use to encode each string
in a database. In line 1, we first initialize two lists, T and T¢, to
store unencoded and encoded suffix trees, respectively. Next we
iterate over each string value s in database D in line 2 and use
function genSuffixTree() to generate a suffix tree 7~ for s (line 3).
The function getSuffixes() in line 4 generates a list of suffixes, L,
of the suffix tree 7. In lines 6 to 14 we encode each character in
each suffix x in the list L using a chained hash encoding method
as described next.

We denote the character at position p in a suffix x as cp, with
1 < p < |x|. Note that these positions are counted within a suffix
(a tree edge) but not within the full string. To encode the suffix
X =cjcp...cp, with I = |x]|, assigned to an edge in a suffix tree,
we propose the following chained encoding scheme to generate
the encoded suffix E = [eq, e, ..., €]

e1 = encode(ci,r) = h(c1 +71),
ep = encode(cp, ep—1,7) = h(cp + ep—1 + 1), p> 1,
where + indicates the string concatenation operation, r is the

secret random salt value (known only to the DOs but not the
LU), and A() is a hash function from the SHA family [22]. To

83321
83321$

321%

Figure 3: The suffix trees for two strings where their
longest common sub-string ‘332’ is highlighted in bold
and red circles. The corresponding chained encodings of
these two suffixes (paths) are described in Sect. 3.1.

Algorithm 1: Basic Encoding of Suffix Trees

Input:

- D: A database of strings

- m: Minimum suffix length

-r: Secret salt value

- h(): Hash function

Output:

-T: List of suffix trees

- T¢: List of encoded suffix trees

1: T=[],T® =[] //Initialize the lists of suffix and encoded suffix trees
2: for s € D do: // Loop over all strings in the database
3: T = genSuffixTree(s) // Generate the suffix tree for the string
4: L = getSuffixes(T) // Get the list of suffix values
5: Le =] // Initialize a list to keep encoded suffixes
6: for x € L do: // Loop over all suffixes
7: if |x| > m do: // Check if suffix is long enough
8: E=] // Initialize the list of encodings for this suffix
9: for p € [1, |x|] do: // Loop over all characters in the suffix
10: if p = 1do:

11: ep = h(ci +7r) // Encode the first character with salt
12: else:

13: ep = h(cp + ep-1 + 1) // Chained hash encoding with salt
14: E.append(ep) // Append encoding to encoded suffix
15: L€.add(E) // Add encoded suffix to the list of encoded suffixes
16: T¢ = genEncSuffixTree(L®, T) // Generate an encoded suffix tree

17: T¢.add(T°)
18: T.add(T)
19: return T, T€

// Add encoded tree to list of encoded suffix trees
// Add unencoded tree to list of suffix trees

generalize the encoding function for a suffix tree, we encode the
sub-string on each edge as above, but using the last encoded
character in its parent edge (if one exists) as the salt for the first
character, unless the edge has no parent, in which case we use
the original salt. Each edge in 7~ therefore leads to one or more
hash encodings which are added in a list L¢ of encoded suffixes.

For example, for the two strings illustrated in Fig. 3, their
highlighted longest common sub-string ‘332’ when using r = 2’
as the secret salt value, will be encoded as:

(1) For string ‘83321":
[Rh(‘32)], [A('3’+h(‘32’)+2’), h(‘2’+h(‘3’+h(‘3Z’)+'2’)+ Z’),
h(‘U+h(‘2’+h(‘3’+h(32")+'2")+2))+2)] =
[R(‘32)], [A(‘3’+e1+°2"), h(‘2’+e2+2’), h(‘1’+e3+°2")]
(2) For string ‘33327:
[R(32")], [A(‘3’+h(‘32°)+'2")], [A(‘2’+h(‘3’+h(‘32’)+2)+ "),
h(‘7’+h(‘2’+h(‘3’+h(‘32))+2)+ 2")+'2")] =
[R(‘32)], [A(‘3’+e1+‘2")], [A(‘2’+e2+Z’), h(‘7 +e3+°2")]

As can be seen from the highlighted bold encodings, these
chained hash encodings allow the privacy-preserving identifi-
cation of the longest common sub-string by the LU without it
learning what the characters in the two input strings are.

Back to Algo. 1, in line 16, using 7~ and the encoded suffixes
in L¢, the function genEncSuffixTree() generates an encoded suf-
fix tree, 7°¢, from 7. Finally, in lines 17 and 18, the generated
encoded and unencoded suffix trees are added to the lists T¢ and
T, respectively.

83321 83379 33327 52321
””””””””””””” .~ T a T
ns &, heSn, el h(5 +1),
e | e | h3+1), e2
h(3 +el +1), el h(3+¢l +1), 1 el Jx (73_1r) h(2+é 1+1), el
| 3
h(3 42 + 1), WL+ 342+,) no%n NG5+, b3 +e2+1), h(l +1)
h2 85 + 1), h(7 53 + 1), h(3+e2+ 1, o h@ £d3+), o
h(l 4534 + 1) el h(9 +524 + 1) el h(2 + %3 +1), h(2 D h(l 24 +1) h@2 %),
h(2 $ 1), h(7+1), |h(7 434 +x h(7 +¢€1 +1) 1+ 4 1)
€ €.
13 5, h(1+9 +0) |na S, ho + &1 +1) b B O)
2 1 2 1 J foLe h2
hG+el+1, hGEn, hG+El+0, hG Fr), e 57 . h@ 42 4, | MGFD hE3 J;r)l’)
3 2 3 2 ’ e ! +el+1),
hQ2+S2+1, hQ2+el+1), h(7+E2+1, h(7+¢l+1), hGro.hAx éfs D haAen | hC +§21 00 b £ 4
3 3 i s ! : ’
h1+%5 1 b2+ hO+S5 O+ 4n B2+ €2 +1),h(7 + €3 +71) b +e2+n), g edy g
52“(83*'24) mé)d 10, sha(7 + r) mod 10 ;}iugz,- l:é)d 10,
e2,e3,ed, e) ; ") ,e3, ed,
sha(l + r) mod 10 Sha(8 1) mod]6; sha(9 +r) mod 1C sha(1 ¥ r) mod 10
‘?2,’ f’%"r ed, e5 sha(2 + r) mod 10,
;2;1(2 +r) mod 10, 5}5;1(7 + 1) mod 10, e2 ";h?u(i{;r?) ;11702171(7),\\‘
she r ¢ sha(3 + 1) mod 10, [€£+&0_ _______
sha(3 + r) mod 10, e2. 63
e2,e3, e ’ -
sha(3 + 1) mod 10, kha(3 +r sha(3 + 1) mod 10, fha(3 +r)mod 10, A~N_ - _ - ______ s : sha(2 +r) mod 10,
RS ;h,l(e +nmod 10, %o k2,63, e Sha(3 £ D mod 10 ;gd(623+814) mod 10, &2
€2, e3,e4 B

Figure 4: Examples of three matching string pairs where the top row shows the original strings and their suffix trees,
the middle row shows the basic encodings from Sect. 3.1, and the bottom row the first character encoding described in
Sect. 3.2. The red circles and paths show the matching sub-strings, where the second column shows matching beginnings,
the third column matching middles, and the last column matching ends. In the third row the first character encodings
(which replace the basic encodings for the first characters in all suffixes) are shown in green, and r denotes the salt value.

A result of our encoding is that different occurrences of the
same character in a suffix, in fact, across a database, will be as-
signed different hash codes depending upon what comes before
the character, thereby making a frequency attack more challeng-
ing. In Fig. 3, the same digit in different tree edges will be encoded
differently, such that every encoding in a tree is unique. This is
discussed in detail in the privacy analysis in Sect. 4.3.

3.2 Secure First Character Encoding

As we discuss in more detail in Sect. 4.3, the distribution of the
first character in values can follow a specific distribution law, such
as Benford’s law [2] for telephone numbers and Zipf’s law [33]
for surnames. This potentially allows the LU to analyze if the first
character encodings of strings follow a specific distribution law
which would allow the identification of corresponding plain-text
characters. To prevent such frequency-based attacks, we apply
an extra encoding to the first characters of every suffix (path)
in a suffix tree. Our first character encoding aims to make the
frequency distribution of the encodings of the first characters
close to a uniform distribution.

Before the DOs apply the first character encoding to each suf-
fix in their encoded suffix trees, each DO independently conducts
a frequency analysis on the existing encodings of the first char-
acters of each value in its database. As we describe in Sect. 4.3, if
these existing encodings of the first characters follow a uniform
distribution in the strings in the two databases that are to be
matched, then the LU will have no frequency information that it
can exploit. In this case our first character encoding technique is
not required.

Algorithm 2: Secure First Character Encoding

Input:
-T:
-T¢:
- k:

List of suffix trees

List of encoded suffix trees
Number of characters to use to re-encode first character
-r: Secret salt value

- n: Modulo value for encoding

- h(): Hash function

Output:

-Tf: List of first character encoded suffix trees

T =]
for 7¢ € T¢ do:

1 // Initialize the list of first character encoded suffix trees
2 // Loop over all encoded suffix trees
3 for E € 7°¢ do: // Loop over each encoded suffix
4 x = getSuffix(E, 7€, T) // Get the corresponding original suffix
5: e} = genEncFirstChar(x, k, r, n, h) // Get first character encoding
6: 7°¢.replace(e;, E) // Replace the original first character encoding
7 T/ .add(T7°)
8: return T/

However, if this frequency analysis shows the encodings of
the first characters follow for example a Benford [2] or Zipf dis-
tribution [33], then the DOs would agree to apply the secure first
character encoding we describe next to each of their suffixes.
Algorithm 2 outlines the steps involved in our first character en-
coding technique that will result in a new frequency distribution
of encodings that is closer to uniform and very different from
the original distribution, as we experimentally validate in Sect. 5.

Prior to using Algo. 2, the DOs need to agree on k > 1, the
number of characters to use in the re-encoding of the first char-
acter, and the secret salt r known only to them. This salt value
can possibly be different from the one used in Algo. 1. Further,
the DOs need to agree on the hash function A() to be used in the

encoding scheme, and the number of unique first encodings to
be generated, n, where |Z| < n < |Z|k. We discuss the choice of
n in more detail in the accuracy analysis in Sect. 4.2.

In line 1 in Algo. 2, each DO initializes the list of first character
encoded suffix trees, 't Next, in line 2, the algorithm iterates over
each encoded suffix tree 7¢ generated using our basic encoding
technique as described in Sect. 3.1. In line 3, we loop over each
encoded suffix E in 7 ¢ and get the corresponding unencoded
suffix x of E (line 4). In line 5, the function genEncFirstChar()
generates a new encoding, ej, for the first character in x using:

e; = h(x[1:k]+r) mod n. (1)

We show in Sect. 4 how this secure first character encoding
approach improves privacy against frequency attacks by the LU
while keeping the accuracy of sequence comparisons. In line 6,
the generated first character encoding, e, is then inserted into
T ¢ by replacing the existing basic encoding of the first character
in an encoded suffix. The rest of the encoded characters in the
suffix stay unchanged. We illustrate this first character encoding
approach in the bottom row of Fig. 4 for three string pairs with
matching beginning, middle, or ending, respectively.

3.3 Privacy-Preserving String Matching

In this section, we describe how the LU can compute the length of
the longest common sub-string across two encoded suffix trees.
Extensions of the functions to compute the longest common
prefix (beginning), the longest common suffix (ending), and the
longest common middle are also discussed. These functions work
both on normal suffix trees, 7, where edges are sub-strings,
as well as encoded suffix trees, 7 ¢, where edges are character
based encodings as discussed before. This is because individual
encodings of characters in an edge are the same if their original
characters and their prefixes were the same.

Longest Common Sub-string: Let s; and s; be two strings
for which we want to compute the length of their longest com-
mon sub-string, and 77 and 7} are their respective encoded
suffix trees. For convenience, we adopt the usual functional-
programming syntax to represent suffix trees. For example, the
suffix tree in Fig. 2 is written as (where € is the empty string):

(Tree € [(Node 83321$), (Tree 3 [(Node 321%), (Node 21$)]),
(Node 21$), (Node 1$)]).

We now define a recursive algorithm to compute the length of
the longest common sub-string, les(sy, s2), given the suffix tree
representations of s; and sy. In the following, size(s) gives the
length of string s, prefixes(s) gives the set of all prefixes of string s,
Iprefix(sy, s2) computes the length of the longest common prefix
of s1 and sy, and s; |sp removes sy from the beginning of s; (when
it exists).

lcs (Node s1), (Node s3)) = Iprefix(s1,52)

les ((Tree si [i1,..., iq]), (Node s3)) =
if sy € prefixes(s;) then size(sz)
else if s; € prefixes (sz) then
size (s1) + max { les(s2|s1, i1), . . ., les(s2]s1, iq) }
else 0

lcs (Node s1), (Tree s2 [i1, ... i) =
les ((Tree s2 [i1, - - ., iq]), (Node s1))
les ((Tree s [i1s .- ial), (Tree s2 [j1, - -
if s; =sy then
size(s1) + max{ les(iy, j1), les(it, j2), - - -
les(ia, jp—1)s les(ias jb)}

- Jp]) =

else if s; € prefixes(sz) then

size(s1) + max { lcs (Tree sa|s1 [j1s - - o> Jpl)s i1)s - - o
les ((Tree szls1 L1, - - - Jpl)s ia) }
else if sy € prefixes(s;) then
size(sp) + max{ lcs ((Tree si|s2 [i1, - .- ial)s j1)s -+ »

les ((Tree s1ls2 [i1, .-
else 0

- dal).jp) }

Longest Common Suffix: The problem of determining whether
two strings represented by their encoded suffix trees share a
common suffix is straightforward to compute. In fact, we can do
better and compute the length of longest common suffix of two
strings, when one exists, via a simple modification of the Ics()
function above by replacing the base case by:

les((Node s1), (Node s2)) = if (s; = s2) then v + size(s1) else 0

Here, v is some arbitrary number that is larger than the longest
string in the database, such as v = 999. A pair of encoded suffix
trees have a common suffix if the above modified function takes
the form v + [, where [is the length of that longest common
suffix. In particular, if the returned value is less than v, then the
two strings do not share a suffix.

Longest Common Prefix: The longest common prefix of two
strings represented by encoded suffix trees can be computed by
traversing the longest suffix (path) in each tree and comparing
them encoding by encoding to find the longest match [1].

Longest Common Middle: The problem of finding the longest
common middle of two strings represented by encoded suffix
trees can be computed easily using the above algorithms: the
les() function must return a positive value, and there cannot be
a common prefix or a common suffix between the two encoded
suffix trees.

String Similarity: To calculate a similarity between two strings
represented by their encoded suffix trees, we use lcs() as described
above, and then calculate a normalized similarity, sim;., as:

les(s1, 52)
max(ly, 1)’

@)

simyqg(s1,82) =

where I; = |s1| and Iy = [s| are the lengths of strings s; and
s2, respectively. The LU can calculate /5 and I; from the longest
suffixes of the corresponding encoded trees, 7;¢ and 7/, respec-
tively. The similarity is normalized such that 0 < simj.s < 1,
where simj.s = 0 means two strings have no sub-string of at
least length m in common, sim;.; = 1 means two strings are
the same, and a value of simj.; means they have a sub-string of
at least m characters in common. Also, it is important to note
that in the event of using the secure first character encoding
scheme upon suffix trees we can only calculate Ics() of a certain
minimum length k, where m > k.

4 ANALYSIS OF OUR PROTOCOL

We now analyze our protocol in terms of complexity, accuracy,
and privacy. We assume each database owner (DO) has a database
D containing |D| records each consisting of a string s, where we
assume the average length of these strings is [. We also assume
all parties participating in the protocol are directly connected to
each other through a secure communication channel.

4.1 Complexity Analysis

We calculate the computational complexities for each step of
our protocol shown in Fig. 1. As described in Sect. 3.1, we use
Ukkonen’s algorithm [26] to construct the suffix tree for each

string value s € D which is of linear complexity in the length
I = |s] of s. Hence the generation of a suffix tree for all string
values in D is of O(|D| - I) complexity. Assuming I suffixes can
be generated for each string s, there can be at most 2/ — 1 edges
in a suffix tree which are (1) the number of paths leading to the
I leaves, plus (2) the number of edges leading to internal nodes
(< I-1). The worst case occurs when each character of a string is
different, such as ‘12345’, leading to [suffixes, one each of length
1to [, and a total of [(I + 1)/2 characters to be encoded.

By assuming each hash operation on a character of s is of O(1)
complexity, then the encoding of all paths in a suffix tree is of
O(1%) worst-case complexity. Hence the overall complexity of
encoding all suffix trees in D (as well as sending them to the LU),
each with [suffixes, is O(|D| - [?). As detailed in Sect. 3.2, the first
character encoding is applied on each suffix in all encoded suffix
trees which is of O(|D| - I) complexity for all strings in D.

For the matching operations performed by the LU, in Sect. 3.3
we have provided recursive functions for computing lcs() and
other related operations. In practice, these recursive functions
can be implemented either as a breadth-first or a depth-first
search algorithm, whichever is more efficient [26].

The comparisons of encodings (hash values) instead of sub-
strings will add a constant time to their time complexities. Let us
assume two encoded suffix trees 75 and 7, of strings s1 and sz,
and each containing [suffixes, respectively. To check if any of the
suffixes of s; matches with any suffixes in sy, a naive approach
requires a traversal through each path (suffix) in 7 for each
path in 75, resulting in a complexity of o(?).

However, work by Babenko and Starikovskaya [1] has shown
that the longest common sub-string between two strings can be
calculated in linear time, O(I), when sorted suffix arrays are used
(assuming O(I xlog [) for sorting) to efficiently obtain the longest
common prefixes. In our implementation, evaluated experimen-
tally in Sect. 5, we employ this efficient matching approach.

4.2 Accuracy Analysis

We first show that running the lcs() function defined in Sect. 3.3
on basic encoded suffix trees as described in Sect. 3.1 gives the
same result as running Ics() on regular suffix trees with high
probability. To see this, note that all we are doing is replacing
operations like s; = sz and s; € prefixes(sz) in lcs() with the
corresponding operations on the encoded characters.

Basic Chained Hash Encoding: We can only get errors in the
longest common sub-string algorithm if there are hash collisions
that map different characters to the same encoded value. In the
case when the hash function h() is SHA256 [22], for example, the
probability of a hash collision in a set of w strings is approxi-
mately %(w/ 2128)2 [27]. The probability of an incorrect longest
common sub-string of length [is thus upper-bounded by:

1 » 1\2
e 5m)
i=1
which decreases rapidly to zero with increasing I.
First Character Encoding: Consider next the setting of running
the les() function on encoded suffix trees with the first character
encoding as described in Sect. 3.2. As before, we can get errors
in the longest common sub-string computation if there are hash
collisions in the encoded characters. Note that in the encoding
scheme from Sect. 3.2 only the first character of each suffix is

changed while the remaining characters continue to be encoded
in the chained hash approach described in Sect. 3.1. Consider

two suffixes x1x2 ... x;, and y1y2 ...y, where x; # y;. Let us
also assume that we use k = 2 in calling Algo. 2. For small n
(we discuss the choice of n in more detail below), there is a good
chance that when using Eqn. (1) it holds

h(x1x2 +r) = h(y1y2 +r) mod n,

resulting in an incorrect match of the encodings of x; and y;.
There are now two cases to consider: x; = y2 and x2 # y2. In both
cases, the basic encoding of x2 and y; given by h(xz +h(x1 +r)+r)
and h(yz + h(y; + r) + r) will not match with high probability
when h() is SHA256, since x1 # y1 in the first case and x3 # y2 in
the second case. The argument holds more generally for arbitrary
k > 1, which means the computation of the longest common sub-
string of length at least k would be correct with high probability,
with the error (collision) probability upper-bounded by:

STILIAS
O (e
i=2

where he(n, |2, k) is the probability of collision when hashing
|2|% possible suffixes into n possible values using Eqn. (1). For
most practical values of |2|, k, and n, we have hc(n, |Z|, k) = 1.
Nevertheless, the error probability decreases rapidly to zero with
increasing k.

How to select the values of k and n used in Eqn. (1) depends
upon the size of the alphabet, |Z|, from where strings are being
generated.

First of all, k must be larger than 1. To see why, assume k = 1
and consider two cases: n < |X] and n > |X|. In the first case,
multiple input characters will be mapped to the same first char-
acter encoding. This can result in false matches of encoded suf-
fixes leading to inaccurate similarity results. In the second case,
n > |Z|, the first character encoding will generate one hash en-
coding per input character in ¥ (assuming no hash collision). The
frequency distribution of the original first characters is there-
fore preserved in the frequency distribution of the first character
encodings computed using Eqn. (1). This will allow the LU to
conduct a frequency attack (as we discuss in more detail below)
by mapping encodings back to characters if the distribution of
these characters follow for example Benford’s Law [2]. Therefore
setting k = 1 results in either inaccurate Ics() calculations or
insecure character encodings.

We have thus established the need for 1 < k < m, where m
is the minimum length of lcs() we want to calculate. For any
such k, the value of n does not have an effect on the accuracy of
our approach. To see why, consider two strings s; and sy. If they
agree on the first k characters, then the encoding of the first k
characters for s; and s; will be the same regardless of what n is.
If s; and sy do not have the same first k characters, then their
hash encodings will disagree at the first position where s; and s,
disagree or earlier, again regardless of what n is.

Given the choice of n does not affect the accuracy of our
approach, should we simply set n = 1? The answer is no, and
the reason relates to privacy rather than accuracy. Note that the
LU is not given the value of k in our protocol. If n is too small
compared to |2|, it becomes easy for the LU to guess what k
is, and leakage of that information opens a (small but) possible
door for the LU to employ frequency attacks on the encoded
suffix trees it receives from the DOs. If n > |2|¥, the frequency
distribution of the original first k characters are preserved in
the distribution of the first character encodings computed using
Eqn. (1), again opening a door to frequency attacks by the LU.

From the above, we can conclude that we should have || <
n < |2k In practice, we set n = ||, which we show empirically
to work well in Sect. 5 for a range of data sets.

4.3 Privacy Analysis

We assume the DOs and the LU follow the honest-but-curious
(HBC) adversary model without any collusion [14]. The HBC
model is commonly used in other PPRL and private string com-
parison protocols [30] because of its applicability to real scenarios.
In the HBC model each party in a protocol tries to learn as much
as possible about other parties’ data based on what it receives
from other parties, while following the protocol steps. We next
analyze the privacy of our approach in terms of security against
privacy attacks by a DO and the LU.

Frequency Attacks by a DO: We assume the DOs do not collude
with the LU. Though each DO agrees upon the same hash function
and secret salt value r in the suffix tree encoding in Sect. 3.1, and
the number of first characters, k, in the first character encoding in
Sect. 3.2, neither of the DOs will learn the set of plain-text strings
of the other DOs. This is because the encoded suffix trees are not
shared between the DOs but only sent to the LU for comparisons.
Hence, a frequency attack by a DO upon the database of another
DO is impossible.

Dictionary and Frequency Attacks by the LU: Once the DOs
send their encoded suffix trees to the LU, the LU compares pairs of
trees to identify possible matching sub-strings encoded in these
trees. The LU can identify the character patterns based on the
encodings in the trees. This includes the number of hash values
that match between two trees and their positions. However, as
described in Sect. 3.1, each character in a suffix is encoded individ-
ually based on the previous character’s hash value concatenated
with the secret salt r. This chained hashing provides strong pri-
vacy against dictionary attacks because the LU cannot attack the
encoded suffix trees by generating its own encoded trees based
on a database of plain-text values without knowing the secret
salt r as used by the DOs to encoding their string databases.

However, when only the basic chained hash encoding de-
scribed in Sect. 3.1 is applied on each suffix, from the set of all
encoded suffix trees it receives the LU can conduct a frequency
analysis on the hash encodings that occur at certain positions in
the suffixes of the encoded trees. From these learned frequency
distributions the LU can try to re-identify which hash encoding
could correspond to a certain character in the alphabet X, as-
suming the LU knows the type of strings encoded in the suffix
trees. The success of such an attack by the LU depends on the fre-
quency distribution of characters and the availability of a similar
plain-text database to the LU [8].

From the longest suffixes in all trees the LU can learn the
length distribution of all encoded strings, and therefore guess
what type of information is encoded in these trees. For example,
if all trees encode strings of length 16 then these are likely credit
card numbers, while strings of length 9 could be UK mobile phone
numbers. One way to overcome this leakage of information is
for the DOs to pad their strings with characters that are not part
of the alphabet ¥ before they are processed, where they need
to make sure each DO has their own set of extra characters to
prevent accidental matches of such added extra characters.

One important aspect of re-identification is however that the
LU needs to be able to identify every character in an encoded
string, because partial identifications might not provide useful
information. A partially identified telephone number of the form

2172172227, where ‘?” means the digit is unknown, will unlikely
help the attacking LU to re-identify an individual. This is different
from attacks on names and addresses as conducted on PPRL [8,
17], where even a few identified q-grams can help re-identify a
person (identity disclosure). For example, if an attacker learns
that a name string contains three identified q-grams, and only
one rare name in a database contains these three q-grams, then
the attacker learns both the name and the individual with that
name [8]. This is because of the smaller domain of names and
addresses (even in large population databases there are commonly
only a few hundred thousand unique names [7]) compared to the
much larger domains for example of credit cards which is in the
order of 1016

Assuming the LU does have access to a plain-text database
with a highly similar frequency distribution of string values, it
can mount a frequency attack whereby it concentrates on the first
character encoding in a suffix, because these encodings are all
based on the same secret salt value r (lines 11 and 13 in Algo. 1).
If there are distinct frequency patterns in a database of plain-text
strings then these will be reflected in a corresponding frequency
distribution of encodings and potentially allow the attacker to
re-identify certain individual characters in the encoded trees. We
discuss the success of such an attack under three scenarios:

1. Uniformly distributed characters: If we assume every char-
acter at every position is selected uniformly random from the
alphabet 3 with probability 1/|3|, then the LU has no frequency
information that can be exploited. This is because each encod-
ing at the beginning of each suffix of the encoded suffix trees
will occur with the same frequency. In such an ideal situation
our chained hash encoding approach will be secure from any
frequency based attack.

2. Value distribution follows a specific law: For a given encoded
suffix tree, the LU can identify the longest suffix and then the
first character in this suffix. The encoding of this first character
in a suffix only depends on its value and the secret salt value r
(unknown to the LU). However, in real scenarios the distribution
of the first character in values usually follows a specific distri-
bution law, such as Benford’s law [2] for telephone numbers or
Zipf’s law [33] for surnames. For example, by assuming the input
strings contain digits only then it is possible that the first digits
in these strings follow Benford’s law, which states that in many
naturally occurring collections of numerical values, the leading
first digit is likely to be small (i.e. 1 occurs more often than 2, 2
more often than 3, and so on).

The LU can perform a frequency analysis of the hash encodings
that correspond to the first position of a string across all encoded
suffix trees. This potentially allows the LU to learn the first digit
in each string. Additionally, each repeat of the first digit later in
a string (which means the digit is again encoded in the top level
of a suffix tree with the secret salt value r) will be the same hash
encoding. Therefore, the LU can learn all positions in a string
where the first digit occurs. Further, due to the basic chained hash
encoding approach, if there is a correlation between occurrences
of the second character based on the first character in a string,
the LU will be able to identify the second character in suffixes
using a frequency analysis.

3. Specific patterns at beginning of strings: Apart from the dis-
tribution of the first character, certain prefixes in string values
can occur frequently in a database leading to distinct patterns in
strings. For example, in international telephone numbers certain
country codes might be more frequent than others (‘+44’ for the

UK likely occurs more often than ‘+354” for Iceland). A similar
frequency analysis as discussed above can be applied on the en-
coded suffix trees, where the LU will be able to identify those
sequences at the beginning of strings that occur more often than
others. This will however only provide the LU with information
about frequent sub-strings at the beginning of strings, which by
themselves will not allow the identification of all characters in a
string nor the actual re-identification of individuals.

As we discussed in the first scenario above, if the characters
of the strings that are encoded in suffix trees follows a uniform
distribution it is highly unlikely for the LU to be able to identify
all characters (or digits) in a string with high accuracy. As we
discussed in Sect. 3.2, if such a uniform distribution occurs in the
databases to be matched then the DOs do not need to perform
the extra first character encoding outlined in Algo. 2.

However, the first character encoding technique described in
Sect. 3.2 provides privacy of string values encoded in suffix trees
against a frequency attack by the LU under the second and third
scenarios discussed above. As we outlined in Algo. 2, the DOs
need to agree on the number of characters, k > 1, to be used for
the re-hashing of the first character. In the first character encod-
ing process, a higher value for k results in more distinct hash
values generated, as we discussed in Sect 4.2 above. Further, the
modulo operation ensures the resulting encodings are uniformly
distributed within the range of n. If we set n = |2| then =k > n
if k > 1. Further, we add a secret salt value r in the first character
encoding scheme. The use of r provides strong privacy against
dictionary attacks on first digits encodings. This is because the
LU is not capable of identifying the correct encoding that has
been applied on different first characters without knowing r that
is used by the DOs.

As we show in our experiments below, each hash encoding
of the first characters of the encoded suffix trees will occur with
nearly the same frequency, especially with larger values of k, even
if the unencoded first characters follow a certain distribution, for
example Benford’s law. This assures that the LU will not be able
to exploit any frequency information about the first characters in
strings and therefore cannot directly map hash encodings to their
corresponding plain-text values. This makes our approach secure
from any frequency based attacks. In Sect. 5 we experimentally
evaluate how frequency distributions of the first characters of
strings of different data types change with different k.

Similarity graph attack by the LU: As we described in Sect. 3.3,
the LU calculates the length of the longest common suffix be-
tween each pair of encoded suffix trees. Once all encoded suffix
tree pairs are compared the LU can construct a similarity graph
where each encoded suffix tree becomes a vertex while the edges
between these vertices represent the length of the longest com-
mon suffix between a pair of encoded suffix trees.

Once such a graph is generated, the LU can construct a similar
graph based on a publicly available plain-text database that has
similar characteristics as the encoded databases. Then the LU can
conduct a sub-graph matching [10] between the two graphs to
identify possible plain-text values that correspond to the encoded
suffix trees. One possible way of carrying out such matching
would be to identify any sub-graphs that are unique and can
obviously be identified based on the vertices that have a unique
set of edges in the sub-graph. If such unique sub-graphs can be
found then the plain-text values that can be mapped to vertices
in the encoded suffix tree graph can be identified with high
probability.

Such an attack by the LU requires the accessibility to a plain-
text database that has a highly similar distribution of characters
in string values as those in the encoded database. Though such
attacks are limited in the literature [9], there are several counter-
measures that the DOs can apply on their databases before encod-
ing and sending them to the LU, including applying blocking [6]
and block-specific salt values, adding faked values into their
databases, or employing several LUs for the comparison of en-
coded suffix trees. We aim to investigate such counter-measures
as future work.

5 EXPERIMENTAL EVALUATION

We used both synthetic as well as real data of different types to
evaluate our novel privacy-preserving string matching approach.
We used the Mockaroo data generator (https://www.mockaroo.
com) to create 10,000 strings with unique credit card and IBAN (In-
ternational Bank Account Number) numbers. From these strings
we then generated corrupted versions by randomly replacing be-
tween 1 and 10 characters from the same alphabet (digits only for
credit card, and digits and letters for IBAN), resulting in 10,000
pairs of credit card and IBAN numbers.

We extracted two different data sets with telephone numbers,
surnames, city names, and street addresses from the North Car-
olina Voter Registration (NCVR) database (https://dl.ncsbe.gov),
where the first data sets were from a snapshot of NCVR from
2015 and the second data sets from a snapshot of NCVR from
2019. We paired records from these two data sets based on the cor-
responding voter identifiers, ensuring we only had pairs where
the strings were not the same. We then selected 10,000 pairs of
strings for each of the four attribute types.

Overall, our data sets consist of strings of different types (digits
only, letters only, or mixed) and of different lengths. They reflect
the types of data commonly used in applications such PPRL where
sensitive databases are to be linked across organizations [30].

We implemented our approach using Python 2.7 and ran
experiments on a server with 128 GBytes of memory and 2.4
GHz CPUs running Ubuntu 16.04. To facilitate repeatability,
the data sets and our programs are freely available at: https:
//dmm.anu.edu.au/ppseqmatch/.

We compared our approach with Bloom filter (BF) encoding
as commonly used in PPRL [23, 30]. The BFs were generated
by converting each string into a q-gram set with g = 2, and by
then hashing each q-gram set into one BF of length 1,000 bits
(a commonly used BF length for PPRL [23]) per q-gram set. We
used different optimal numbers of hash functions ko, that lead
to the smallest number of false positives [28]: 46 for credit card
and 30 for IBAN numbers, 116 for surnames, 87 for city names,
36 for street addresses, and 77 for telephone numbers.

As a second baseline method we used a tabulation hashing
based approach for PPRL recently proposed by Smith [25], where
again q-gram sets are hashed into bit arrays using a tabulation
approach which provides min-hashing properties [19]. This ap-
proach was shown to calculate more accurate similarities. We
used 8 tabulation keys each of 64 bits length to generate one bit
array of length 1,000 bits to encode one string.

There are many different techniques to calculate similarities
between strings [6]. Because of the encodings used in the three
methods we compare, we need to employ different such string
matching techniques. We are however not interested in the abso-
lute similarities calculated between two strings; rather we want
to know if for the same string pair the same similarity method

https://www.mockaroo.com
https://www.mockaroo.com
https://dl.ncsbe.gov
https://dmm.anu.edu.au/ppseqmatch/
https://dmm.anu.edu.au/ppseqmatch/

Credit card numbers) Credit card numbers Credit card numbers = Credit card numbers
1.0f - S 1.0 —~1.0 O 1.0
T g A 4] 2
Lo08 I Zos8 208 0.8
) WIMI > "||' > £
0.6/ M £ 0.6 £06 Bo06
Sl 8 |“ E 5
S04 204 2 0.4 @ 0.4
c . o 5
o2 502 Lo2 502
o 2 i © o
0.0 500p 3 @ 0.0] £o0
0.0 0.2 0.4 0.6 0.8 1.0 © 00 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 L o0 0.2 0.4 06 0.8 1.0
Q-grams (Dice) Q-grams (Jaccard) Suffix tree (LCS) Suffix tree (LCS)
Telephone numbers § Telephone numbers Telephone numbers - Telephone numbers
1.0| B £1.0 ~1.0 810
I e ” g i [=)
Qo8 P! 2o ‘ 2038 =0.8]
= TTILL > = £
0.6 T L2 So6 £o06 Zos6
£ k .|!:- L 3 3 2
B 0.4 e 2 0.4 0 0.4 S04
8 . g S 2
c .t 5
02) 502 £02 502
& £] 2
0.0 500 @0.0p - Lo0
0.0 0.2 0.4 0.6 0.8 1.0 & 00 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 L oo 0.2 0.4 0.6 0.8 1.0
Q-grams (Dice) Q-grams (Jaccard) Suffix tree (LCS) Suffix tree (LCS)
Surnames 2 Surnames Surnames = Surnames
& 1.0 ~1.0 O10
T o - 4] - 2 -
Lo Sos m! Sos L 0.8 T
= 2 P 2 - 5 -
2 5 0.6) 'gj 5 0.6 / gos /
2
i it — —
A S N
. 0.2 : Lo.2 - 502 -~
@
: iy B o
0.0} 5 0.0) @ 0,0t - £ 0.0
0.0 0.2 0.4 0.6 0.8 1.0 & 0o 0.2 0.4 X 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 L o0 0.2 0.4 0.6 0.8 1.0
Q-grams (Dice) Q-grams (Jaccard) Suffix tree (LCS) Suffix tree (LCS)
Cities T Cities Cities = Cities
1.0] & 1.0 =10 810
— @]
] - B QO 2
gog 2os8 208 0.8
= o o < -
0.6 £ 0.6] > Zo6 - B0 o
20 5 e 50 L 8o -
o4 So4 ~_||:.:«" So4 - To4 -
I [. o - 5 e
o
o2 §0.2 H £0.2 / 502 /
= < g0 |40 8 %
0.0} 5 0.0] 5 @0} - 20.0
0.0 0.2 0.4 0.6 0.8 1.0 © 00 0.2 0. X 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 L oo 0.2 0.4 06 0.8 1.0
Q-grams (Dice) Q-grams (Jaccard) Suffix tree (LCS) Suffix tree (LCS)
Street addresses 2 Street addresses = Street addresses
1.0f & 1.0 —~1.0 O 1.0
o) g 14 2
208 208 208 0.8
= o o £
c c - o -
208 5 0.6| 5 0.6 - 806 -
o4 gos goa / §04 /
c 5
o2 502 £0.2 502
ES e 2 2
0.0 500 @ 0.0] Lo0
0.0 0.2 0.4 0.6 0.8 1.0 & 00 0.2 0.4 0% 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 L o0 0.2 0.4 06 0.8 1.0
Q-grams (Dice) Q-grams (Jaccard) Suffix tree (LCS) Suffix tree (LCS)
IBAN numbers § IBAN numbers IBAN numbers —_ IBAN numbers
1.0| 810 ~1.0 810
T g g 2
2og Zo0s8 208 0.8
= o o £
0.6 £0.6 £ 0.6] Bo.s
< E i g
Bo4 S04 So.4 G4
8] S 2
50,2 502 Y02 g 0.2
& & 2 =
0.0 500" - @0, 200
0.0 0.2 0.8 1.0 & 00 0.2 0.8 10 0.0 0.2 0.8 1.0 L o0 0.2 0.8 1.0

0.4 0.6 0.4 0.6
Q-grams (Dice) Q-grams (Jaccard)

0.4 0.6 0.4 0.6
Suffix tree (LCS) Suffix tree (LCS)

Figure 5: Similarity plots of Bloom filter (BF) encoding [23] (left) and tabulation based hashing (TabHash) [25] encoding
(second left), basic encoded suffix trees (second right), and secure first character encoded suffix trees with m =2, k=2, and
n =|X| (right). As can be seen, both our suffix tree based encoding methods provide accurate similarity calculations, while
BF and TabHash encoding can lead to substantially changed similarities even between very similar strings.

applied on the unencoded and the encoded strings gives the same
similarity value or not. For our suffix tree based approach, as
described in Sect. 3, we calculated the longest common sub-string
similarity using Eqn. (2) on both unencoded and encoded suffix
trees (both the basic and first character encoding described in
Sects. 3.3 and 3.2, respectively). For BF encoding we calculated
the Dice coefficient similarity on the g-gram sets and on BFs [23],
while for tabulation based hashing we calculated the Jaccard
similarity on q-gram sets and on the bit arrays generated by this
encoding technique [25].

In Fig. 5 we show scatter plots where the horizontal axis shows
unencoded similarities and the vertical axis shows the corre-
sponding encoded similarities. A pair of strings where both the

unencoded and the encoded similarities are the same will gener-
ate a point in a scatter plot that is shown on the diagonal, while
any point off the diagonal shows differences in the calculated
similarities between unencoded and encoded strings. An accurate
(exact) privacy-preserving string similarity measure should only
result in pairs of similarities that are the same and are therefore
located on the diagonal.

As can be seen from Fig. 5, the similarities calculated on suffix
trees from both our encoding approaches always result in the
same similarities as calculated from unencoded suffix trees. This
shows our approach does accurately calculate the longest com-
mon sub-string similarities on encoded suffix trees in a privacy-
preserving manner where the DOs do not need to reveal their

Credit card numbers with k = 2 Credit card numbers with k = 3

Credit card numbers with k = 4 Credit card numbers with k = 5

2 3 4 5 6 7 8 9

3 4 5 6 7 8 9 0

4000 4000 4000 4000
23000 3000 3000 3000
2
@
§2000 2000 2000 2000
e
1000] 1000 | I 1000 | I 1000 I
: | IS I Y ., ril AR N A NNNE N
i 2 3 4 5 6 7 8 9 0 1 2 4 78 9 0 1 2 3 4 5 6 7 8 9 0 23 4 6 7 8 9 0
First character First character First character First character
Telephone numbers with k = 2 4000 Telephone numbers with k = 3 4000 Telephone numbers with k = 4 4000, Telephone numbers with k = 5
4000 3500 3500 3500
3000 3000 3000
Ezooo 2500 2500 2500
g 2000 2000 2000
g0 1500 1500) 1500
e
1000 1000 1000 1000
500) 500 I I 500) I
o 0 0 | o
T2 35 7 5 6 7 8 9§ 0 1 2 3 4 5 6 7 8 9 0 12 3 4 5 6 7 8 9 0 1 2 3 4 5 6 1 9 0
First character First character First character First character
1000 Surnames with k = 2 1000, Surnames with k = 3 1000, Surnames with k = 4 1 Surnames with k = 5
800) 800 800 800)
> z
2 600 600 600) 2 600
5} 153
El El
S 400, 400 400 2 400
fre fre
- | | | - | | | " | ” | |
0 | 0 = 0! i 0
abcdefghijkimnopgrstuvwxyz abcdefghijk imnopgrstuvwxyz abcdefghijkImnopqrstuvwxyz abcdefghijKkimnoparstuvwxyz
First character First character First character First character
1200 Cities with k = 2 1200 Cities with k = 3 1200 Cities with k = 4 1200 Cities with k =5
1000 1000 1000
> 800 800 800
2
S 600 600 600
g
£ 400 400 400
=Nl = 1111 I = Nl
| | | | o
O bcdetghijkimnoparstuvwxyz abcdefghijk i mnopgrstuvwxyz O abcdefghijkimnopqrstuvwxyz abcdefghijkimnopgrstuvwxyz
First character First character First character First character
. Street addresses with k = 2 can Street addresses with k = 3 3500 Street addresses with k = 4 00 Street addresses with k = 5
3000 3000 3000 3000
22500 2500 2500 2500
£ 2000 2000 2000 2000
21500 1500| 1500 1500]
3
i 1000 1000 1000 1000
=111 | 111 =] I =] |
o 1 o o o
1 2 3 6 8 9 0 1 0 1 2 1 2 3 4 5 6 7 8 9 0

4 5 7
First character First character

IBAN numbers with k = 3

First character First character

4000 IBAN numbers with k = 4 4000 IBAN numbers with k = 5

500
0!

200 IBAN numbers with k = 2 4000,

3500 3500)
3000 3000)
22500 2500)
$ 2000 2000
1500 1500
1000 1000

1IN ST T | 1
1234567890abcdefghi j KImnopqrs tuvwxyz
First character

1234567890abcde fghi j kimnopqrs tuvwxyz
First character

3500 3500
3000 3000
2500 2500
2000 2000
1500 1500
1000 1000
500 500
0 0!

1234567890abcdefghi j kImnopqrs tuvwxyz 1234567890abcdefghi j k Imnopqrs tuvwxyz
First character First character

Figure 6: Frequency distributions of the first characters in strings with different k from 2 (left) to 5 (right). The red lines
show the original first character distributions while the blue bars show the distributions of the first character encodings,

with n=X

sensitive plain-text strings to any other party. As can also be
seen, BF based Dice coeflicient similarities can be much higher
than their corresponding q-gram based similarities especially for
string pairs that have only few q-grams in common. This is be-
cause BF encoding introduces collisions where different q-grams
are hashed to the same bit positions. Similarly, tabulation based
hashing leads to inaccurate similarities being calculated, where
this approach leads to encoded similarities that are both above
and below the actual Jaccard similarities calculated on unencoded
q-gram sets.

These issues will affect the similarities calculated between
strings for both BF encoding and tabulation based hashing, and
therefore affect the quality of matched strings and the resulting
quality of any follow-up analysis or investigation that is based

. As can be seen, as k increases the distributions of the first character encodings become more uniform.

on these matched strings. Of serious concern would be if wrong
high BF or tabulation hashing similarities lead to falsely matched
individuals in the context of fraud detection or national security.
In Fig. 6, we show the frequency distributions of the first char-
acters of strings between the original first character distributions
and the encoded first characters after our first character encod-
ing from Sect. 3.2 has been applied. As can be seen, our first
character encoding method results in more uniform or signifi-
cantly changed frequency distributions of the first characters in
strings, where these distributions depend upon the value of k,
the number of first characters to use in the encoding. As we dis-
cussed in Sect. 4.2, the larger k the more uniform the frequency
distributions of these first character encodings become.

Encoding time complexity

3
10 EEE Unencoded Suffix Tree Generation
B Basic Encoding (Section 3.1) [Bloom Filters with k= opt
107 3 First Character Encoding (Section 3.2) [TabHash Encoding
w
2
S 10!
1
@
E
o 10°
£
=
107
102L |
Credit card Telephone Surnames Cities Street IBAN
numbers numbers addresses numbers

String matching time complexity

I Unencoded Suffix Tree Matching 3 Bloom Filters with k=opt
[First Character Encoding (Section 3.2) [TabHash Encoding
10"
w
3
2
$107?
@
)
E
g
3
£10
10"
Credit card Telephone Surnames Cities Street IBAI
numbers numbers addresses numbers

Figure 7: Comparison of run-times for encoding (left) and string matching (right) between our approach, Bloom filters,
and tabulation based hashing (TabHash). Shown are average times for encoding one string and matching one string pair.

Finally, in Fig. 7 we show run-times for encoding and matching.
As can be seen, our approach to convert strings into suffix trees
and encoding them using chained hash encoding, as well as
re-hashing the first characters, is faster or equally fast as BF
encoding. Both our encoding approach and BF encoding are
much faster than tabulation hashing which requires significantly
more hash encodings. On the other hand, our encoding approach
is around one to almost two magnitudes slower in the string
matching phase than the very efficient bit array based baseline
methods. This is expected because our approach requires the
individual comparison of hash codes for each position in a suffix
compared to the highly efficient single bit-wise operations on bit
arrays. We believe this is a price worth paying given the accurate
and privacy-preserving longest common sub-string similarities
our method can calculate.

6 CONCLUSIONS AND FUTURE WORK

We have presented a novel privacy-preserving string matching
technique based on suffix trees that allows the accurate and ef-
ficient calculation of longest common sub-string based string
similarities. Our approach encodes strings into suffix trees such
that no re-identification of the full input string is possible, and
neither can a frequency attack be mounted on individual charac-
ter encodings. The experimental evaluation has shown that our
approach results in the same string similarities as on unencoded
suffix trees, while commonly used Bloom filter encoding and
tabulation based hashing will lead to potentially much higher or
lower similarities between encoded strings.

As future work we aim to conduct a more formal analysis of
the privacy of our approach and investigate different counter-
measures that can be applied upon our approach to reduce the
amount of information that can be learned by an attacker by
conducting a graph similarity analysis.

ACKNOWLEDGMENTS

This work was partially funded by the Australian Research Coun-
cil under Discovery Project DP160101934. The authors like to
thank Alex Antic for discussions and contributions to the experi-
mental design.

REFERENCES

[1] M. Babenko and T. Starikovskaya. 2008. Computing longest common sub-
strings via suffix arrays. In ICSSR. Springer, Moskow, 64-75.

[2] F.Benford. 1938. The law of anomalous numbers. APS 78, 4 (1938), 551-572.

[3] B. Bezawada, A. Liu, B. Jayaraman, et al. 2015. Privacy-preserving string
matching for cloud computing. In ICDCS. IEEE, Columbus, 609-618.

[4] S.Chan, B. Kao, C. Yip, et al. 2003. Mining emerging substrings. In DASFAA.

IEEE, Kyoto, 119-126.
[5] M. Chase and E. Shen. 2014. Pattern Matching Encryption. IACR Cryptology

ePrint Archive 2014 (2014), 638.
[6] P.Christen. 2012. Data Matching. Springer, Heidelberg.
] P. Christen. 2014. Preparation of a real temporal voter data set for record
linkage and duplicate detection research. The Australian National University.

[8] P.Christen, T. Ranbaduge, D. Vatsalan, et al. 2018. Precise and Fast Cryptanal-
ysis for Bloom Filter Based Privacy-Preserving Record Linkage. IEEE TKDE
(2018).

[9] C.Culnane et al. 2017. Vulnerabilities in the use of similarity tables in com-
bination with pseudonymisation to preserve data privacy in the UK Office
for National Statistics’ Privacy-Preserving Record Linkage. arXiv:1712.00871
(2017).

[10] M. Heimann, H. Shen, T. Safavi, and D. Koutra. 2018. Regal: Representation
learning-based graph alignment. In ACM CIKM. Turin, 117-126.

[11] D. Karapiperis, A. Gkoulalas-Divanis, and V. Verykios. 2017. A Framework for
Distance-Aware Privacy-Preserving Record Linkage. IEEE TKDE 30, 2 (2017).

[12] M. Kimura, A. Takasu, and J. Adachi. 2013. FPI: a novel indexing method
using frequent patterns for approximate string searches. In Joint EDBT/ICDT
Workshops. Genoa, 397-403.

[13] M. Kuzu, M. Kantarcioglu, E. Durham, and B. Malin. 2011. A Constraint

Satisfaction Cryptanalysis of Bloom Filters in Private Record Linkage. In PETS.

Waterloo, Canada, 226-245.

Y. Lindell and B. Pinkas. 2009. Secure multiparty computation for privacy-

preserving data mining. JPC 1, 1 (2009).

[15] E. McCreight. 1976. A space-economical suffix tree construction algorithm.
JACM 23, 2 (1976).

[16] T. Moataz and E. Blass. 2015. Oblivious Substring Search with Updates. IJACR
Cryptology ePrint Archive (2015).

[17] F.Niedermeyer, S. Steinmetzer, M. Kroll, and R. Schnell. 2014. Cryptanalysis of
Basic Bloom Filters Used for Privacy Preserving Record Linkage. JPC (2014).

[18] M. Patil, X. Cai, S. Thankachan, R. Shah, SJ. Park, and D. Foltz. 2013. Approxi-
mate string matching by position restricted alignment. In Joint EDBT/ICDT
Workshops. Genoa, 384-391.

[19] M. Patrascu and M. Thorup. 2011. The power of simple tabulation hashing. In
STC. ACM, San Jose, 1-10.

[20] J. Pei, WC. Wu, and MY. Yeh. 2013. On shortest unique substring queries. In
IEEE ICDE. Brisbane, 937-948.

[21] M. Ralph. 1980. Protocols for Public Key Cryptosystems. In IEEE SP.

[22] B. Schneier. 1996. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley and Sons.

[23] R.Schnell, T. Bachteler, and Reiher J. 2009. Privacy-preserving record linkage
using Bloom filters. BMC Med Inform Decis Mak 9, 1 (2009).

[24] K. Shimizu, K. Nuida, and G. Rétsch. 2016. Efficient privacy-preserving string
search and an application in genomics. Bioinformatics 32, 11 (2016).

[25] D. Smith. 2017. Secure pseudonymisation for privacy-preserving probabilistic
record linkage. JISA 34 (2017).

[26] E.Ukkonen. 1993. Approximate string-matching over suffix trees. In CPM.

[27] E.Upfal and M. Mitzenmacher. 2005. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. CUP.

[28] D. Vatsalan and P. Christen. 2016. Privacy-preserving matching of similar
patients. JBI (2016).

[29] D. Vatsalan, P. Christen, and VS. Verykios. 2013. A Taxonomy of Privacy-
Preserving Record Linkage Techniques. Elsevier IS 38, 6 (2013), 946-969.

[30] D. Vatsalan, Z. Sehili, P. Christen, et al. 2017. Privacy-Preserving Record
Linkage for Big Data. In Handbook of Big Data Technologies. Springer.

[31] S. Wandelt, D. Deng, Gerdjikov S., et al. 2014. State-of-the-art in string simi-
larity search and join. SIGMOD Record 43 (2014), 64-76.

[32] J. Wang, X. Yang, B. Wang, et al. 2016. An adaptive approach of approximate
substring matching. In DASFAA. Dallas, 501-516.

[33] G.Zipf. 1949. Human Behavior and the Principle of Least Effort. Addison-Wesley
Press.

[14

	Abstract
	1 Introduction
	2 Related Work
	3 Privacy-Preserving Suffix Tree Matching
	3.1 Suffix Tree Construction and Encoding
	3.2 Secure First Character Encoding
	3.3 Privacy-Preserving String Matching

	4 Analysis of Our Protocol
	4.1 Complexity Analysis
	4.2 Accuracy Analysis
	4.3 Privacy Analysis

	5 Experimental Evaluation
	6 Conclusions and Future Work
	Acknowledgments
	References

