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1 Some Properties of the Gaussian Density

Definition 1. The (one-dimensional) Gaussian density is defined by
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Lemma 1. Let f = N(z;puyp,05) and g = N(x; pug,04). Then the normal-
isation of the pointwise product f x g is another Gaussian N (z;psq,054),
where

| ppoy g0y

Hfg = 2 2 and o5 =
o + o

Proof. Straightforward algebra. O

Definition 2. The convolution of two functions f(¢) and g(t) is defined as

fog= / 7 fe - ().

The convolution of two Gaussians is also another Gaussian.

Lemma 2. Let f = N(x;p5,05) and g = N (z; g, 04). Then

f®g:=/ N(@ = tipg, op)N(t; pg, 0g)dt

= N(z;p5 + pg, (/07 +02).



The following proof of Lemma 2 comes from [Bro03]. The key result
we exploit is that the Fourier transform of a convolution is the pointwise
product of Fourier transforms:

F(f®g)=F(f)F(g),

where I is the Fourier transform
oo
F(f) = k. / f(z)e 2™k qy,
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For a nice and short introduction to the theory of Fourier transforms, see
[GBGLOS, §II1.27]

Proof. (of Lemma 2) We have
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The step (2) follows from a change of variable y = x—u. The step (4) follows
from Euler’s formula e=* = cos @ — isin . The step (5) follows because the

function inside the second integral is an odd function, which integrates to
zero. The step (8) follows from the known identity
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From the above, we have
F(f®g)=F(f)F(g)
= )\k.e_Qﬂ—kufieiwﬁaJ%kz8_2”kﬂgie—27r203k2
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Equations (9) and (10) now yields

f®g=N(@;pus+ pg,\/oF +02).

2 Derivation of the Kalman Filter

Suppose we have the following models:

obsModel : State — Density Observation
(obsModel s 0) = (N s 0, 0)
transModel : Action — State — (Density State)
(transModel a s s') = (N (s +a) o1 §').

Then we have

obsUpdate : Observation — (Density State) — (Density State)
(obsUpdate o (N o)) = (normalise Xs.(N p o s) x (obsModel s 0)))
= (normalise As.(N p o s) x (N s 0, 0)))
= (normalise A\s.(N po s) x (N 0o, s)))
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where the last step follows from Lemma 1. We also have

transUpdate : Action — (Density State) — (Density State)
oo

(transUpdate a (N p o)) = )\x./ (N u o s) x (transModel a s x)ds
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where the last step follows from Lemma 2.
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