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1 Some Properties of the Gaussian Density

Definition 1. The (one-dimensional) Gaussian density is defined by

N (x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 .

Lemma 1. Let f = N (x;µf , σf ) and g = N (x;µg, σg). Then the normal-
isation of the pointwise product f × g is another Gaussian N (x;µfg, σfg),
where

µfg =
µfσ

2
g + µgσ

2
f

σ2
f + σ2

g

and σfg =

√√√√ σ2
fσ

2
g

σ2
f + σ2

g

.

Proof. Straightforward algebra.

Definition 2. The convolution of two functions f(t) and g(t) is defined as

f ⊗ g :=
∫ ∞
−∞

f(x− t)g(t)dt.

The convolution of two Gaussians is also another Gaussian.

Lemma 2. Let f = N (x;µf , σf ) and g = N (x;µg, σg). Then

f ⊗ g :=
∫ ∞
−∞
N (x− t;µf , σf )N (t;µg, σg)dt

= N (x;µf + µg,
√
σ2
f + σ2

g).
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The following proof of Lemma 2 comes from [Bro03]. The key result
we exploit is that the Fourier transform of a convolution is the pointwise
product of Fourier transforms:

F (f ⊗ g) = F (f)F (g),

where F is the Fourier transform

F (f) = λk.

∫ ∞
−∞

f(x)e−2πikxdx.

For a nice and short introduction to the theory of Fourier transforms, see
[GBGL08, §III.27]

Proof. (of Lemma 2) We have

F (N (x;µ, σ))

= λk.

∫ ∞
−∞

1
σ
√

2π
e−

(x−µ)2

2σ2 e−2πikxdx (1)

= λk.
1

σ
√

2π

∫ ∞
−∞

e−
y2

2σ2 e−2πik(y+u)dy (2)

= λk.
e−2πikµ

σ
√

2π

∫ ∞
−∞

e−
y2

2σ2 e−2πikydy (3)

= λk.
e−2πikµ

σ
√

2π

∫ ∞
−∞

e−
y2

2σ2 (cos(2πky)− i sin(2πky))dy (4)

= λk.
e−2πikµ

σ
√

2π

[∫ ∞
−∞

e−
y2

2σ2 cos(2πky)dy − i
∫ ∞
−∞

e−
y2

2σ2 sin(2πky))dy
]

(5)

= λk.
e−2πikµ

σ
√

2π

∫ ∞
−∞

e−
y2

2σ2 cos(2πky)dy (6)

= λk.
e−2πikµ

σ
√

2π
2
∫ ∞

0
e−

y2

2σ2 cos(2πky)dy (7)

= λk.
e−2πikµ

σ
√

2π

√
π2σ2e−2(πkσ)2 (8)

= λk.e−2πkµie−2π2σ2k2
. (9)

The step (2) follows from a change of variable y = x−µ. The step (4) follows
from Euler’s formula e−iθ = cos θ− i sin θ. The step (5) follows because the
function inside the second integral is an odd function, which integrates to
zero. The step (8) follows from the known identity∫ ∞

0
e−at

2
cos(2xt)dt =

1
2

√
π

a
e−

x2

a .

2



From the above, we have

F (f ⊗ g) = F (f)F (g)

= λk.e−2πkµf ie−2π2σ2
fk

2

e−2πkµgie−2π2σ2
gk

2

= λk.e−2πk(µf+µg)ie−2π2(σ2
f+σ2

g)k
2

. (10)

Equations (9) and (10) now yields

f ⊗ g = N (x;µf + µg,
√
σ2
f + σ2

g).

2 Derivation of the Kalman Filter

Suppose we have the following models:

obsModel : State → Density Observation
(obsModel s o) = (N s σo o)
transModel : Action → State → (Density State)
(transModel a s s′) = (N (s+ a) σt s′).

Then we have

obsUpdate : Observation → (Density State)→ (Density State)
(obsUpdate o (N µ σ)) = (normalise λs.((N µ σ s)× (obsModel s o)))

= (normalise λs.((N µ σ s)× (N s σo o)))
= (normalise λs.((N µ σ s)× (N o σo s)))

=
(
N µσ2

o + oσ2

σ2
o + σ2

√
σ2
oσ

2

σ2
o + σ2

)
,

where the last step follows from Lemma 1. We also have

transUpdate : Action → (Density State)→ (Density State)

(transUpdate a (N µ σ)) = λx.

∫ ∞
−∞

(N u σ s)× (transModel a s x)ds

= λx.

∫ ∞
−∞

(N u σ s)× (N (s+ a) σt x)ds

= λx.

∫ ∞
−∞

(N u σ s)× (N a σt (x− s))ds

= (N (µ+ a)
√
σ2 + σ2

t ),
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where the last step follows from Lemma 2.

References

[Bro03] P.A. Bromiley. Products and convolutions of Gaussian distribu-
tions. Technical Report 2003-003, Imaging Science and Biomed-
ical Engineering Division, Medical School, University of Manch-
ester, 2003.

[GBGL08] Timothy Gowers, June Barrow-Green, and Imre Leader, editors.
The Princeton Companion to Mathematics. Princeton University
Press, 2008.

4


