Outline

- Introduction
- Bayesian Probability Theory
- Sequence Prediction and Data Compression
 - The Context Tree Weighting algorithm
- Bayesian Networks

Copyright 2015 Kee Siong Ng. All rights reserved.

Sequence Prediction

Given we have seen

1001110100

so far, what is likely to be the next bit?

Copyright 2015 Kee Siong Ng. All rights reserved.

Converting to a Learning Problem

Given we have seen

1001110100

so far, what is likely to be the next bit?

Construct examples $(x,y) \in \{0,1\}^* \times \{0,1\}$:

$$[(\epsilon,1),(1,0),(10,0),(100,1),(1001,1),\dots,(100111010,0)].$$

From that, learn a function from $\{0,1\}^* \to \textit{Density}\ \{0,1\}$ to predict the next bit after 1001110100.

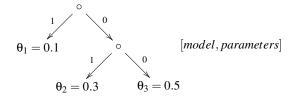
To proceed, we need a model class.

Copyright 2015 Kee Siong Ng. All rights reserved.

Ġ

Model Class - Prediction Suffix Trees

Suppose we know the underlying source generating the data is a prediction suffix tree (PST).



E.g. after 10010, the next generated symbol is 1 with probability $PST(10010) = \theta_2$.

After 100100, the next symbol is 1 with probability θ_3 .

Copyright 2015 Kee Siong Ng. All rights reserved.

A Simpler Problem: Parameter Learning

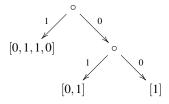
- The overall problem is to identify the underlying prediction suffix tree generating the binary sequence. (Hard)
- Suppose we are given the model of the prediction suffix tree, but not its parameters.
- What do we do?

Copyright 2015 Kee Siong Ng. All rights reserved.

A Simpler Problem: Parameter Learning

• Idea: Just push all the examples down the model and then use the counts to estimate the Bernoulli distributions.

Suppose sequence seen so far is 10011101, then data is [(1,0),(10,0),(100,1),(1001,1),(10011,1),(100111,0),(1001110,1)].



Copyright 2015 Kee Siong Ng. All rights reserved.

The Krichevsky-Trofimov Estimator

• Let $x_{1:t} = x_1 x_2 \dots x_t$ be the input string and let $x_{1:t|l}$ be the (non-contiguous) subsequence of $x_{1:t}$ with a zeros and b ones that end up at a leaf node l. How do we estimate the Bernoulli distribution at l?

Copyright 2015 Kee Siong Ng. All rights reserved.

The Krichevsky-Trofimov Estimator

- Let $x_{1:t} = x_1 x_2 \dots x_t$ be the input string and let $x_{1:t|l}$ be the (non-contiguous) subsequence of $x_{1:t}$ with a zeros and b ones that end up at a leaf node l. How do we estimate the Bernoulli distribution at l?
- A solution is

$$\Pr(X = 1 \, | \, x_{1:t|l}) = \frac{b}{a+b}.$$

Copyright 2015 Kee Siong Ng. All rights reserved.

The Krichevsky-Trofimov Estimator

- Let $x_{1:t} = x_1 x_2 \dots x_t$ be the input string and let $x_{1:t|l}$ be the (non-contiguous) subsequence of $x_{1:t}$ with a zeros and b ones that end up at a leaf node l. How do we estimate the Bernoulli distribution at l?
- A solution is

$$\Pr(X = 1 \, | \, x_{1:t|l}) = \frac{b}{a+b}.$$

- Problematic when a and b are small.
- A way to correct for that is to use

$$\Pr_{kt}(X=1\,|\,x_{1:t|l}) = \frac{b+1/2}{a+b+1}.$$

• The KT-estimator converges to the true Bernoulli distribution quickly.

Copyright 2015 Kee Siong Ng. All rights reserved.

/

Sequence Prediction

• Now let's make the whole process incremental:

```
Loop {
    Predict next bit using current prediction suffix tree;
    Observe next bit and update prediction suffix tree;
}
```

Copyright 2015 Kee Siong Ng. All rights reserved.

- Let \mathcal{M}_d denote the set of all models of prediction suffix trees of depth at most d.
- Suppose we know the underlying source is in \mathcal{M}_d , but we don't know which one.
- What do we do?

Copyright 2015 Kee Siong Ng. All rights reserved.

Bayesian optimal predictor:

$$\Pr(x_t | x_{1:t-1}) = \frac{1}{\Pr(x_{1:t-1})} \Pr(x_{1:t})$$

Copyright 2015 Kee Siong Ng. All rights reserved.

Bayesian optimal predictor:

$$Pr(x_{t} | x_{1:t-1}) = \frac{1}{Pr(x_{1:t-1})} Pr(x_{1:t})$$

$$= K \sum_{M \in \mathcal{M}_{d}} Pr(M) Pr(x_{1:t} | M)$$

Copyright 2015 Kee Siong Ng. All rights reserved.

Bayesian optimal predictor:

$$Pr(x_{t} | x_{1:t-1}) = \frac{1}{Pr(x_{1:t-1})} Pr(x_{1:t})$$

$$= K \sum_{M \in \mathcal{M}_{d}} Pr(M) Pr(x_{1:t} | M)$$

$$= K \sum_{M \in \mathcal{M}_{d}} Pr(M) Pr(x_{1:t-1} | M) Pr(x_{t} | x_{1:t-1}, M)$$

Pr(M) is the prior on M;

 $Pr(x_{1:t-1}|M)$ is the evidence for M given past data $x_{1:t-1}$;

 $\Pr(x_t | x_{1:t-1}, M)$ is the prediction made by M after its parameters are estimated using $x_{1:t-1}$.

Copyright 2015 Kee Siong Ng. All rights reserved.

Sequence of Bayesian optimal predictors:

$$\begin{aligned} \Pr(x_{1}) &= \sum_{M \in \mathcal{M}_{d}} \Pr(M) \Pr(x_{1} \mid M) \\ \Pr(x_{2} \mid x_{1}) &= \sum_{M \in \mathcal{M}_{d}} \Pr(M) \Pr(x_{1} \mid M) \Pr(x_{2} \mid x_{1}, M) \\ \Pr(x_{3} \mid x_{1:2}) &= \sum_{M \in \mathcal{M}_{d}} \Pr(M) \Pr(x_{1:2} \mid M) \Pr(x_{3} \mid x_{1:2}, M) \\ &\vdots \\ \Pr(x_{t} \mid x_{1:t-1}) &= \sum_{M \in \mathcal{M}_{d}} \Pr(M) \Pr(x_{1:t-1} \mid M) \Pr(x_{t} \mid x_{1:t-1}, M) \end{aligned}$$

Copyright 2015 Kee Siong Ng. All rights reserved.

The Context Tree Weighting Algorithm

• Can we compute Bayesian optimal predictors efficiently in this case?

$$\Pr(x_t | x_{1:t-1}) = \sum_{M \in \mathcal{M}_d} \Pr(M) \Pr(x_{1:t-1} | M) \Pr(x_t | x_{1:t-1}, M)$$

- \bullet The summation over \mathcal{M}_d looks ominous at first sight...
- It turns out that the structure in the class \mathcal{M}_d can be exploited to produce an efficient algorithm.

Copyright 2015 Kee Siong Ng. All rights reserved.

A Prior for Prediction Suffix Trees

- Need a prior Pr(M) for $M \in \mathcal{M}_d$.
- Occam's razor: smaller trees are more probable.
- How do we proceed?

Copyright 2015 Kee Siong Ng. All rights reserved.

A Prior for Prediction Suffix Trees

- Need a prior Pr(M) for $M \in \mathcal{M}_d$.
- Occam's razor: smaller trees are more probable.
- How do we proceed?
- Idea: Find an encoding scheme for trees and then use the length of the encoding as an estimate of a tree's probability.

Copyright 2015 Kee Siong Ng. All rights reserved.

A Coding Scheme for Trees

- Walk the tree in preorder. Everytime we see an internal node, we write down 1. Everytime we see a leaf node, we write a 0 if the depth of the leaf node is less than d; otherwise we write nothing.
- The cost $\Gamma_d(t)$ of a tree $t \in \mathcal{M}_d$ is the length of its code.
- Define $Pr(M) = 2^{-\Gamma_d(M)}$.
- One can show that

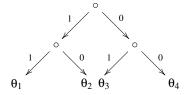
$$\sum_{M\in\mathcal{M}_d} 2^{-\Gamma_d(M)} = 1.$$

Copyright 2015 Kee Siong Ng. All rights reserved.

Context Tree

We define the depth-d context tree as the fully balanced depth-d prediction suffix tree.

E.g. d = 2



Fact: Every member in $\mathcal{M}_{\!d}$ is a submodel of the depth-d context tree.

Copyright 2015 Kee Siong Ng. All rights reserved.

CTW Algorithm

Suppose $x_{1:t}$ is the sequence seen so far.

Let $x_{1:t|n}$ be the (non-continguous) subsequence of $x_{1:t}$ that pass through or end up in node n of the context tree.

Define
$$Pr_{kt}(y_{1:k}) = Pr_{kt}(y_1) Pr_{kt}(y_2|y_1) Pr_{kt}(y_3|y_{1:2}) \cdots Pr_{kt}(y_k|y_{1:k-1})$$
.

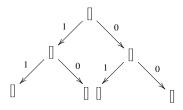
The weighted probability P_w^n of each node n in the context tree is defined inductively as follows:

$$P_w^n(x_{1:t|n}) = \begin{cases} \Pr_{kt}(x_{1:t|n}) & \text{if } n \text{ is a leaf node} \\ \frac{1}{2}\Pr_{kt}(x_{1:t|n}) + \frac{1}{2}P_w^{n_t}(x_{1:t|n_t})P_w^{n_r}(x_{1:t|n_r}) & \text{otherwise,} \end{cases}$$

where n_l and n_r are the left and right childs of n.

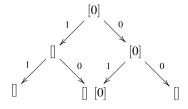
Copyright 2015 Kee Siong Ng. All rights reserved.

Suppose sequence seen so far is 10011101, then data is [(10,0),(100,1),(1001,1),(10011,1),(100111,0),(1001110,1)].



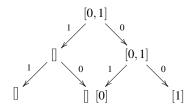
Copyright 2015 Kee Siong Ng. All rights reserved.

Suppose sequence seen so far is 10011101, then data is [(10,0),(100,1),(1001,1),(10011,1),(100111,0),(1001110,1)].



Copyright 2015 Kee Siong Ng. All rights reserved.

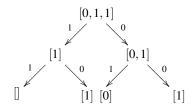
Suppose sequence seen so far is 10011101, then data is [(10,0),(100,1),(1001,1),(10011,1),(100111,0),(1001110,1)].



Copyright 2015 Kee Siong Ng. All rights reserved.

 $\Gamma/$

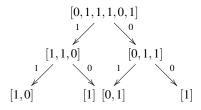
Suppose sequence seen so far is 10011101, then data is [(10,0),(100,1),(1001,1),(10011,1),(100111,0),(1001110,1)].



Copyright 2015 Kee Siong Ng. All rights reserved.

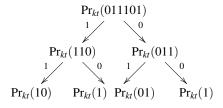
 $\Gamma/$

Suppose sequence seen so far is 10011101, then data is [(10,0),(100,1),(1001,1),(10011,1),(100111,0),(1001110,1)].

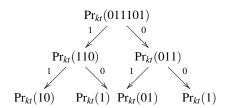


Copyright 2015 Kee Siong Ng. All rights reserved.

Suppose sequence seen so far is 10011101, then data is [(10,0),(100,1),(1001,1),(10011,1),(100111,0),(1001110,1)].



 $Copyright\ 2015\ Kee\ Siong\ Ng.\ All\ rights\ reserved.$



$$\begin{split} P_w^l(110) &= \frac{1}{2} \text{Pr}_{kt}(110) + \frac{1}{2} \text{Pr}_{kt}(10) \text{Pr}_{kt}(1) \\ P_w^r(011) &= \frac{1}{2} \text{Pr}_{kt}(011) + \frac{1}{2} \text{Pr}_{kt}(01) \text{Pr}_{kt}(1) \\ P_w^{\lambda}(011101) &= \frac{1}{2} \text{Pr}_{kt}(011101) + \frac{1}{2} P_w^l(110) P_w^r(011) \end{split}$$

Copyright 2015 Kee Siong Ng. All rights reserved.

Analysis of the CTW Algorithm

Theorem: For each node n in the context tree at depth d, we have

$$P_w^n(x_{1:t|n}) = \sum_{M \in \mathcal{M}_d} 2^{-T_d(M)} \Pr(x_{1:t|n}|M).$$

Corollary: The weighted probability $P_w(x_{1:t})$ computed at the root node of the context tree is Bayesian optimal under the prior $\Pr(M) = 2^{-T(M)}$.

Copyright 2015 Kee Siong Ng. All rights reserved.

Proof Sketch

- Key fact: $\Pr(x_{1:t}|M) = \prod_{l \in L(M)} \Pr_{kt}(x_{1:t|l}|M)$.
- Proof by induction

Copyright 2015 Kee Siong Ng. All rights reserved.

Proof Sketch

$$\begin{split} P_{w}^{\lambda}(011101) &= \frac{1}{2} \text{Pr}_{kt}(011101) + \frac{1}{2} P_{w}^{l}(110) P_{w}^{r}(011) \\ &= \frac{1}{2} \text{Pr}_{kt}(011101) + \frac{1}{2} \left(\frac{1}{2} \text{Pr}_{kt}(110) + \frac{1}{2} \text{Pr}_{kt}(10) \text{Pr}_{kt}(1) \right) \\ &\qquad \qquad \left(\frac{1}{2} \text{Pr}_{kt}(011) + \frac{1}{2} \text{Pr}_{kt}(01) \text{Pr}_{kt}(1) \right) \\ &= \frac{1}{2} \text{Pr}_{kt}(011101) + \frac{1}{8} \text{Pr}_{kt}(110) \text{Pr}_{kt}(011) \\ &\qquad \qquad + \frac{1}{8} \text{Pr}_{kt}(110) \text{Pr}_{kt}(01) \text{Pr}_{kt}(1) \\ &\qquad \qquad + \frac{1}{8} \text{Pr}_{kt}(10) \text{Pr}_{kt}(1) \text{Pr}_{kt}(011) \\ &\qquad \qquad + \frac{1}{8} \text{Pr}_{kt}(10) \text{Pr}_{kt}(1) \text{Pr}_{kt}(01) \text{Pr}_{kt}(1) \end{split}$$

Copyright 2015 Kee Siong Ng. All rights reserved.

CTW Algorithm: Prediction

Given $x_{1:t}$, how do we predict x_{t+1} .

The CTW algorithm gives us only block probabilities $Pr(x_{1:j})$.

Since

$$Pr(x_{t+1}|x_{1:t}) = \frac{Pr(x_{1:t+1})}{Pr(x_{1:t})},$$

we simply calculate $Pr(x_{1:t}0)$ and $Pr(x_{1:t}1)$ and predict the value with the higher probability.

Copyright 2015 Kee Siong Ng. All rights reserved.

Relationship with Compression

- Claim: If we can predict well, then we can compress well.
- Suppose we know the characters M, P, N, E occur with 60%, 20%, 10%, 10% probability, respectively, in a message of size *n*.
- Using a naive encoding of 2 bits per symbol requires 2n bits.
- From information theory, we know if we can encode
 - M with $-\log_2 0.6 = 0.74$ bits
 - P with $-\log_2 0.2 = 2.32$ bits
 - N and E with $-\log_2 0.1 = 3.32$ bits each

then, on average, we need only $\sum_c -\Pr(c)\log_2\Pr(c)=1.57$ bits/symbol. Further, this is theoretically the best rate achievable.

Copyright 2015 Kee Siong Ng. All rights reserved.

Relationship with Compression

- A compression method called arithmetic coding takes as input an estimate $\hat{\Pr}(c|h)$ of $\Pr(c|h)$, where h is the message seen so far and c the next symbol, and produces an encoding that is very close to the optimal rate determined by $\hat{\Pr}(c|h)$.
- CTW can be used to construct $\hat{Pr}(c|h)$ that gets very close to Pr(c|h).
- Therefore good predictive power implies good compression.
- Conversely, good compression usually implies good predictive power (in the sense that a Bayesian mixture is almost always dominated by the simple models in the class).

Copyright 2015 Kee Siong Ng. All rights reserved.

Session Review

- Bayesian optimal estimators are hard to compute in general, but there are exceptions.
- In the context of sequence prediction,
 - good predictive power implies good compression
 - good compression (usually) implies good predictive power

Copyright 2015 Kee Siong Ng. All rights reserved.