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Chapter 1

Introduction

Escher is a functional logic programming language first introduced in [L1095] and [L1099]. It was
designed with the intention to provide in a simple computational mechanism the best features of
functional and logic programming. The basic approach taken in the desgin of Escher is simple:
start from Haskell and add logic programming facilities. (There are other approaches one can take
in the design of functional logic programming languages; see, for example, [NM98] and [Han94].)

To understand Escher, we need to understand two things. The first is the form of a valid
Escher program. The second is the underlying computational mechanism of the language. These
are covered in §1.1, which is essentially a summary of [L1o03, Chap. 5]. In §1.2 the relationships
between Escher, Haskell and Prolog are clarified. We give some example Escher programs in §1.3.

1.1 Logical Foundation

The logic underlying Escher is a polymorphically typed higher-order logic. The terms of the logic
are the terms of the typed A-calculus, formed in the usual way by application, abstraction, and
tupling from the set of constants and a set of variables. An Escher program is a theory in the
logic in which each formula is a particular kind of equation, namely, a statement.

Definition 1.1.1. A statement is a term of the form h = b, where h has the form f ¢;...t,,
n > 0, for some function f, each free variable in h occurs exactly once in h, and b is type-weaker
than h.

The term h is called the head and the term b is called the body of the statement. The statement
is said to be about f.

For our purpose here, we say a term s : o is type weaker than a term ¢ : 7 if there exists a
type substitution « such that 7 = oy and every free variable in s is a free variable in t. The type
weaker condition stipulates that the body of a statement cannot contain free variables not already
occurring in the head of the statement.

Definition 1.1.2. The definition of a function f is the collection of all statements about f,
together with the signature for f.

Definition 1.1.3. An FEscher program is a collection of definitions.
Example 1.1.4. Here are two Escher programs for performing list concatenations.
concaty : List a — List a — List a

concaty || x =

concat; (#zy) z = (# z (concat; y z))
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concaty : List a X List a x List a — {2
concaty (u,v,w)=(u=1[ AN v=w)V
Ir3zJy.(u= (Fra) N w=(#ry) N concaty (z,v,y))

The first is written in the functional programming style. (It is in fact a valid Haskell program.)
The second is written in the relational or logic programming style. The term concats (z,y, 2)
evaluates to T iff z is a concatenation of x and y. We will look at concats in more details to see
how logic programming is supported in Escher shortly.

Definition 1.1.5. A redex of a term t is a subterm of ¢ that is a-equivalent to an instance of the
head of a statement.

Recall that two terms are a-equivalent iff they differ only in the names of bound variables. A
subterm s of ¢ is a redex if we can find a statement h = b and a term substitution # mapping
variables to terms such that hf is a-equivalent to s.

A redex is outermost if it is not a proper subterm of another redex. Two outermost redexes
are by definition disjoint. We are interested primarily in outermost redexes because we want the
evaluation strategy to be lazy.

Given an Escher program and a term ¢, a redex selection rule S maps ¢ to a subset of the set
of outermost redexes in t. A standard redex selection rule is the leftmost selection rule Sy,. Given
a term ¢, the rule Sy, picks out the (single) leftmost outermost redex in ¢. This is the selection
rule implemented in the current Escher interpreter.

Definition 1.1.6. A term s is obtained from a term ¢ by a computation step using the selection
rule S if the following conditions are satisfied.

1. S(t) = {r;} is non-empty.

2. For each i, the redex r; is a-equivalent to an instance h;6; of the head of a statement h; = b;
for some term substitution 6;.

3. s is the term obtained from t by replacing each redex r; by b;6;.

Definition 1.1.7. A computation from a term ¢ is a sequence {t;}_; of terms where ¢t = ¢; and
t;11 is obtained from ¢; by a computation step. The term ¢; is called the goal of the computation
and t,, is called the answer.

As is standard in typed declarative languages, run-time type checking is not necessary in
Escher. The fact that the body of every statement is type weaker than its head and that every
free variable in the head of a statement occurs exactly once ensures that every computation step
produces a new term that is well typed.

Central to Escher are some basic functions defined in the booleans module. These functions,
together with the term rewriting mechanism described above, provide logic programming facilities
in the functional programming setting. I list here some of these boolean functions.

TANx==zx
1l ANxz=_1
dr.l =1

u A Jz.v=73z.(uAvV)
Jry.3xe. -+ Fzp.(x A (1 =u) A y)=3x2. -+ Jx,.(x{z1/u} ANy{z1/0})
Ve (Ll —-u)=T
Va1 Veg. o Vo, (x A (zp=u) ANy = v) =
Vig. - No,.(x{z1/u} A y{z1/u} = v{z1/u}) (1.7)

AAA/—\/—\/-\
—_ e e e e
S O s W N =
= D O = —

Most of these equations are fairly straightforward. One thing is worth noting though. Variables
typeset in bold above are actually syntactical variables. So an equation like (1.4) actually stands
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for a (possibly infinite) collection of Escher statements with u and v instantiated to all possible
terms of type boolean. The use of syntactical variables usually come with side conditions. For
example, for (1.4) to be applicable, the syntactical variable u must not contain a free occurrence
of z. Similarly, 1 must not occur free in u for (1.5) and (1.7) to work.

Example 1.1.8. The following is an example Escher computation using the S redex selection
rule. The redex selected at each time step is highlighted. Note how Equation (1.5) given above is
used to remove the existential quantifiers.

concatg ([1],]2], w)

(=0 A2=w) Vv Ir3z3y.(1] = (#rz) A w=(#ry) A concaty (,[2],y))
= (LA2l=w) V IrFzTy.(1) = (#rz) AN w=(#ry) A concaty (z,[2],y))

= 1V FIrIzeJy.(1] = (#rx) AN w=(#ry) N concate (z,[2],y))

= FrIxTy.([1] = (#ra) AN w=(#ry) A concatg (z,[2],y))

= Frdxy.(r=1 ANzxz=[ ANw=(#ry) A concats (z,[2],y))

= JzIJy(x =] N w=(#1y) A concaty (z,[2],y))

Jy.(w=(#1y) A concatz ([],[2],y))

= Jy.(w=(#1y) AN y=[2)
= (w=1[1,2])

Example 1.1.9. Given the goal concats (z,y,[1, 2]), Escher will return with the following answer
@=0Ary=[L2) Vv =L Ay=2)V (@=[12 Ay=]),

which is computed using the same mechanism described in the previous example.

1.2 Escher, Haskell and Prolog

We first explore the relationship between Escher and Haskell. At the logic level, every Haskell pro-
gram is an Escher program and every Escher program is a (syntactically-correct) Haskell program
which may not compile. In that sense, Escher is a superset of Haskell. The difference between
Escher and Haskell comes down to the following two points.

o Haskell allows pattern matching only on data constructors. Escher extends this by allowing
pattern matching on function symbols as well as data constructors. Examples of equations
that Haskell cannot handle but Escher can are those in the booleans module given earlier.

e The second thing that Escher can do but Haskell can’t is reduction of terms inside lambda
abstractions. This mechanism allows Escher to handle sets (and similar data types) in a
natural and intensional way. This is usually achieved with the use of syntactical variables.

The extra expressiveness afforded by Escher comes with a price tag, however. Some common
optimisation techniques developed for efficient compilation of Haskell code (see [Pey87]) cannot
be used in the implementation of Escher. In other words, efficiency is at present still a non-trivial
issue for Escher.

We next explore the relationship between Escher and Prolog. Perhaps suprisingly, there is
actually a significant overlap between the two languages. In fact, any Prolog program defined
without using cuts can be mechanically translated into Escher via Clark’s completion algorithm
[Cla78]. For example, the Escher program concaty given earlier is just the completion of the
following Prolog definition.

concatg ([], L, L).
concate ([X|L1],L2,[X|L3]) «— concaty (L1,L2,L3).
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Procedurally, there is a difference between Escher and Prolog in that Prolog computes alter-
native answers one at a time via backtrackking whereas Escher returns all alternative answers in
a disjunction (a set). This point is illustrated in Example 1.1.9 above.

1.3 Example Programs

I end this short introduction with some example Escher programs. The aim here is to showcase
the different styles of declarative programming supported by Escher. An Escher interpreter is
available for download as a separate program from http://rsise.anu.edu.au/ kee.

Example 1.3.1. Here is how quick sort can be written in Escher. This is just a vanilla Haskell
program that doesn’t make use of special logic programming facilities in Escher.

gsort : List a — List a

gsort [| =[]

gsort (# x y) = concaty (gsort (filter (< z) y)) (# x (gsort (filter (> z) y)))
filter : (a — 2) — List a — List a

filter p [] = [

filter p (#xy) =if (pz) then (# x (filter p y) else (filter p y)

Example 1.3.2. The following is an example of an Escher program for computing permutations
of lists. The function permute returns true iff the two input arguments are permutations of each
other. The function delete is a subsidiary function of permute that returns true iff the third
argument is the result of removing the first argument from the second argument.

permute : (List a) x (List a) — §2

permute ([],z) = (z =])
permute ((# = y), w) = Fu.Fv.3z.(w = (# v v) A delete (u, (# x y),2) N permute (z,v))

delete : a x (List a) x (List a) — 2
delete(z,[],y) = L
delete(z,(# yz),w)=(z=y AN w=2)V Jv(w=(Fyv) A delete (z,z,v))

Given permute ([1,2,3],(2,1,8]), Escher will return T. Given permute ([1, 2, 2], z), Escher will
return the answer

e=[1,23Vae=[1,32] Vo=[2013Vae=[231Vz=[312Vz=[321.
Example 1.3.3. Here are some standard functions defined on sets.

union : (a = 2) = (a = 2) = (a = N2)

union s t = Az.((s z) V (t z))

intersect : (a — 2) = (a = 2) = (a = 2)

intersect s t = Ax.((s ) A (t z))

minus : (a — 2) = (a = 2) — (a = 2)

minus s t = Az.((s ) A =(t x))

subset : (a — 2) = (a = 2) = £

subset s t =Vz.((s z) = (t z)))
Similar functions for multisets can be just as easily defined.

Chapter 7 contains more programming examples.



1.4. INSTALLING ESCHER 5

1.4 Installing Escher

The source code for Escher is available for download from http://rsise.anu.edu.au/"kee/. The
file README.1ST contains installation instructions.

1.5 Using Escher

The following shows a simple session with Escher.

> escher -i

prompt> import booleans.es ;
Reading booleans.es...done

prompt> import numbers.es ;

prompt> : (add 37.4 4.6) ;
Query: ((add 37.4) 4.6)
Answer: 42 ;

prompt> import lists.es ;

prompt> type ListInt = (List Int) ;

prompt> myg : ListInt -> Bool ;

prompt> (myg []) = False ;

prompt> (myg (# x y)) = True ;

prompt> setl : ListInt -> Bool ;

prompt> setl {0, [1,2,3] } ;

prompt> set2 : ListInt -> Bool ;

prompt> set2 = { [1 } ;

prompt> : \exists y.(&& (setl y) (myg y)) ;
Query: (sigma \y.((&& (setl y)) (myg y)))
Answer: True ;

prompt> : \exists y.(&& (set2 y) (myg y)) ;
Query: (sigma \y.((&& (set2 y)) (myg y)))
Answer: False ;

prompt> import lists.es ;
Reading lists.es...done

prompt> : (permute ([1,2],x)) ;
Query: (permute (((# 1) ((# 2) [1)),x))
Answer: ((I| ((==x) ((# 1) (# 2) [1)))) ((==x) (# 2) (* 1) [1)))) ;

prompt> quit ;

Quiting Escher...

1.6 Escher Prelude

Escher supports six system-defined types: Bool, Int, Float, Char, String, ListString. The last
of these, ListString, is actually a synonym for (List Char).

There are a number of system modules: Booleans, Numbers, Lists, and Sets. These can be
found in Chapter 6.

1.7 Escher’s Syntax

We give the grammar for valid input to the interpreter in this section. Regular expressions for
tokens like FILENAME, IDENTIFIER1, IDENTIFER2 etc are given at the end of the section.

The Escher interpreter takes program_statements one at a time. A program statement is
either an import statement, an Escher statement, a query or a quit instruction.

input : program_statements ;

program_statements : /* empty */ | program_statements program_statement ;
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program_statement : import | statement | type_info | query | quit ;

quit : "quit" ’;°
import : "import" FILENAME ’;°
statement : term ’=’ term ;

We now look at the grammar for terms. A term is a term possibly with syntactic variables
in it. The grammar for term is defined inductively as follows. Each syntactic variable is a term.
Each variable is a term. Each constant, which can be either a function or a data constructor,
is a term. If t1 and t2 are terms having appropriate types, then (t1 t2) is a term. If x is a
variable and t is a term, then \x.t is a term. If t1, t2, ..., tn are terms, then (t1,t2,...,tn) is
a term. Syntactic variables can come with side conditions. These are stated using sv_condition.
There are four kinds of condition we can state. We can specify that a syntactic variable must be a
variable or a constant. We can also require that the instantiation of a syntactic variable be equal
or not equal to the instantiation of an earlier syntactic variable.

term : SYNTACTIC_VARIABLE | SYNTACTIC_VARIABLE sv_condition
| VARIABLE

| FUNCTION | DATA_CONSTRUCTOR | DATA_CONSTRUCTOR_INT

| DATA_CONSTRUCTOR_FLOAT | DATA_CONSTRUCTOR_STRING

| IDENTIFIER1 | IDENTIFIER2

| >’ term term ’)’

| >\’ VARIABLE ’.’ term

| (> terms_product ’)°

| term_sugar

terms : term | terms term ;
terms_product : /* empty */ | terms_product ’,’ term ;

sv_condition : ’/’ VAR °/’ | ?/? CONST °/°
| °/? EQUAL ’,’ SYNTACTIC_VARIABLE ’/’
| °/’ NOTEQUAL ’,’ SYNTACTIC_VARIABLE ’/’

>

Terms as defined can be cumbersome to work with. To ease the writing of the spec file,
syntactic sugars are provided for sets, lists, and the quantifiers. This is how they works.

o A set like {t1, t2} will be turned into the term
\x.(ite (== x t) True (ite (== x t2) True False))

before Escher can process it. Here ite is the familiar if-then-else function.
o A list like [ t1, t2 ] will be turned into the term (# t1 (# t2 [1)).

e In accordance with the mathematics (see [L1o03, pg. 43]), a formula like \exists x.t will
be turned into the term (sigma \x.t) and a formula like \forall x.t will be turned into
the term (pi \x.t).

Another syntactic sugar we provide is the ability to enclose terms obtained from multiple applica-
tions within a single pair of brackets. So, a term like (((f x) y) z) can be more simply written
as (f x y z).

term_sugar : ’(’ term term terms ’)’

’{’> terms_product ’}’

’[’ terms_product ’]°

’\’ "exists" VARIABLE ’.’ term
’\? "forall" VARIABLE ’.’ term
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To facilitate type checking, the signature of every constant used in the program must be
explicitly stated. The grammar for such type declarations is given below. Type synonyms can be
used to simplify these type declarations.

type_info : functionsymbol ’:’ type ’;’
| dataconstructors ’:’ type ’;’
| "type" IDENTIFIER2 ’=’ type ’;°

functionsymbol : IDENTIFIER1 | FUNCTION ;

dataconstructors : dataconstructor | dataconstructors ’,’ dataconstructor ;
dataconstructor : IDENTIFIER2 | DATA_CONSTRUCTOR ;

We now look at the grammar for types. A parameter (type variable) is a type. These are
alphanumerics that start with a lower case letter. Each of the basic nullary type constructors like
Bool, Number and String is a type. If T is a n-ary type constructor and t1, t2, ..., tn are types,
then (T t1 t2 ... tn) is a type. If t1 and t2 are types, then t1 -> t2is a type. If t1, t2, ...,
tn are types, then (t1 * t2 * ... * tn) is a type.

type : IDENTIFIER1
| "Bool" | "Number" | "String" | IDENTIFIER2
| »(> IDENTIFIER2 types ’)’
| >’ products ’)’
| type "->" type
| ,(7 type 7)7

products : products ’*’ type | type ’*’ type ;

types : type | types type ;

Here are the regular expressions for the tokens used in the grammar. IDENTIFIERI1 are
alphanumerics that start with a lower case letter. IDENTIFIER2 are alphanumerics that start
with an upper case letter. System-defined data constructors and functions are declared here. A
file that can be imported into the spec file must end with “.e”. Variables and syntactic variables
are also governed by fixed rules here. Care should be taken with variables. A lot of programming
errors are associated with the use of variable names that does not actually conform to the grammar.

IDENTIFIER1 = [a-z] [a-zA-Z0-9\_\’]x

IDENTIFIER2 = [A-Z] [a-zA-Z0-9\_\’]*
DATA_CONSTRUCTOR = (True | False | # | []1)
DATA_CONSTRUCTOR_FLOAT = -7[0-9]+\.[0-9]+
DATA_CONSTRUCTOR_INT = -7[0-9]+
DATA_CONSTRUCTOR_STRING = \"[a-zA-Z0-9\-\_\+\: I*\"
FUNCTION = (== | /= | <= | < | > | > ] && | |])
FILENAME = [a-zA-Z\/0-9\_\.]+\.es

VARIABLE = [m-z] [0-9]*

SYNTACTIC_VARIABLE = [a-zA-Z][0-9]*\_SV



Chapter 2

Types and Terms

2.1 Types

Comment 2.1.1. Types are defined inductively in the logic, thus lending itself nicely to the use
of composite pattern [GHIV95, p.163] for its implementation.

We differentiate between atomic and composite types. Atomic types are obtained from type
constructors with arity 0. Examples of these include int, float, nat, char, string, etc. (Note that
string is a nullary type constructor in this case. Strings in general can also be constructed from
List char.) They are the base types, and occupy the leaf nodes of a composite type structure.
Everything else are composite types. Examples of composite types include types obtained from
type constructors of non-zero arity like List o, Btree a, Graph «a (3, etc; function types like set o
(this is equivalent to o — 2) and multiset o (o« — nat); and product types obtained from the
tuple-forming operator.

The following is an outline of the data types module. We first give the abstract classes, followed
by the actual data types.

(types.h 8)=
#ifndef _DATATYPE_H_
#define _DATATYPE_H_

#include <set>

#include <vector>
#include <string>
#include <assert.h>
#include <iostream>
using namespace std;
#define dcast dynamic_cast
#define unint unsigned int

extern const string underscore, alpha, Parameter, Tuple, Arrow,
gBool, gInt, gFloat, gChar, gString,

(type:function declarations 12f)
(type::type 9b)
(type::composite types 10c)
(type::parameters 11d)
(type::tuples 13c)
(type::algebraic types 16b)
(type::abstractions 14b)
(type::synonyms 13b)
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#endif

(types.cc 9a)=
#include "types.h"
#include <stdlib.h>

(type::functions 10b)

(type::composite types::implementation 10d)
(type::parameters::implementation 12a)
(type::tuples::implementation 13d)
(type::algebraic types::implementation 17a)
(type::abstractions::implementation 14c)

Comment 2.1.2. The top-level type structure contains as members those variables and functions
that are common to all types. Every type obviously has a name.

The functions setAlpha and addAlpha are used to configure subtypes; they are defined only
for composite types like tuples and list. (See Comment 2.1.4 for details.)

(type::type 9b)=

class type {

public:
int count,
type() { count = 0; }
type(string n) : tag(n) { count = 0; }
virtual ~type() {}
virtual void setAlpha(type * x, unsigned int y) {}
virtual void addAlpha(type * x) {}
virtual type x getAlpha(unsigned int z) { return NULL; }
virtual int alphaCount() { return 0; }
virtual bool isComposite() { return false; }
virtual bool isTuple() { return false; }
virtual bool isAbstract() { return false; }
virtual bool isParameter() { return false; }
virtual bool isSynonym() { return false; }
virtual bool isUdefined() { return false; }
virtual string getName() { return tag; }
virtual string & getTag() { return tag; }
virtual type x clone() { count++; return this; }
virtual void deccount() { count—; }
virtual void getParameters(set<string> & ret) {}
virtual void renameParameters() {}
virtual void renameParameter(string name) {}

protected:
string tag;

b

Uses getParameters 11b, renameParameter 1lc, and renameParameters 1lc.

Comment 2.1.3. We use reference counting for the memory management of the base types. The
variable count keeps track of the number of references to a type. Deallocation of a type structure
is done using the function delete-type defined as follows.
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(type::type 9b)+=
void delete_ type(type * x);

Defines:
delete_type, used in chunks 10d, 13b, 18-20, 23b, 25a, 27d, 41b, 141e, 149a, 153d, and 157a.

(type::functions 10b)=
void delete_ type(type * x) {
// if (x->isComposite() || x->isParameter()) assert(x->count == 0);
if (z—count = 0) delete z; else z— deccount();

}

Defines:
delete_type, used in chunks 10d, 13b, 18-20, 23b, 25a, 27d, 41b, 141e, 149a, 153d, and 157a.

Comment 2.1.4. The following is the class declaration for composite types. The member alpha
stores the sub-types in the composite structure. It serves different purposes for different kinds of
composite types.

(type::composite types 10c)=

class type composite : public type {

protected:
vector<type x> alpha;

public:
virtual ~type composite();
bool isComposite() { return true; }
virtual void deccount();
virtual void setAlpha(type * x, unsigned int y);
virtual void addAlpha(type * z) { alpha.push_back(z); }
virtual type x getAlpha(unsigned int z);
virtual int alphaCount() { return alpha.size(); }
virtual string getName();
virtual type * clone() { assert(false); }
virtual void getParameters(set<string> & x);
virtual void renameParameters();
virtual void renameParameter(string name);

b

Uses getParameters 11b, renameParameter llc, and renameParameters 1llc.

(type::composite types::implementation 10d)=
type_ composite::~type_ composite() {
for (unsigned int i=0; #alpha.size(); i++) delete type(alphali]);
}

Uses delete_type 10a 10b.

(type::composite types:implementation 10d)4=
void type_ composite::deccount() {
count——;
for (unsigned int i=0; i£alpha.size(); i++) alpha|i]— deccount();



1la

11b

1lc

11d

2.1. TYPES 11

(type::composite types::implementation 10d)4=
void type composite::setAlpha(type * x, unsigned int y)
{ assert(y < alpha.size()); alphaly] = z; }

type * type_ composite::getAlpha(unsigned int z)
{ assert(x < alpha.size()); return alphalz]; }

string type_ composite::getName() { assert(false); return ""; }

Comment 2.1.5. The following functions are used during unification and type-checking. The
first one collects in a set all the parameters in a type. This is used in the unification algorithm. The
second and third functions are used to rename parameters during instantiation and type checking.

(type::composite types:implementation 10d)4=
void type composite::getParameters(set<string> & ret) {
for (unsigned int i=0; i£alpha.size(); i++)
alphali]— getParameters(ret);

Defines:
getParameters, used in chunks 9-12 and 19a.

(type::composite types:implementation 10d)4=
void type_ composite::renameParameters() {
set<string> ps;
getParameters(ps);
set<string>::iterator p = ps.begin();
while (p # ps.end()) { renameParameter(xp); inc_ counter(); p++; }
}
void type_composite::renameParameter(string name) {
for (unsigned int i=0; i£alpha.size(); i++)
alpha|i|—renameParameter(name);
}
Defines:
renameParameter, used in chunks 9-12.

renameParameters, used in chunks 9-12 and 23a.
Uses getParameters 11b and inc_counter 13a.

Comment 2.1.6. Parameters are type variables.

(type::parameters 11d)=

class type parameter : public type {

public: type parameter();
type_ parameter(string x) { tag = Parameter; vname = x; }
type * clone() { return new type_parameter(vname); }
bool isParameter() { return true; }
string getName() { return tag + underscore + vname; }
void getParameters(set<string> & ret);
void renameParameters();
void renameParameter(string name);

private:
string vname;

b

extern string newParameterName();

Uses getParameters 11b, renameParameter llc, and renameParameters 1llc.
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Comment 2.1.7. When we create a new type parameter, a distinct name of the form alpha_i
where i is a number will be assigned to the parameter.

(type::parameters::implementation 12a)=
#include "global.h"
static int parameterCount = 0;
type_ parameter::type_ parameter() {
tag = Parameter; vname = newParameterName(); }

Comment 2.1.8. New parameter names are created using this next function. The variable
parameterCount is used here as the index for new parameter names. This function can be replaced
with newVar in terms.nw.

(type::parameters::implementation 12a)+=
string newParameterName() {
string vname = alpha + numtostr(parameter Count++);
return vname;

(type::parameters::implementation 12a)+=
void type parameter::getParameters(set<string> & ret) {
string temp = tag + underscore + vname;
ret.insert(temp);

Uses getParameters 11b and insert 30e.

(type::parameters::implementation 12a)+=
void type parameter::renameParameters()
{ string temp = tag+underscore+vname; renameParameter(temp); inc_ counter(); }

Uses inc_counter 13a, renameParameter 1lc, and renameParameters 1llc.

Comment 2.1.9. If a parameter has been indexed, we will first remove its index and then attach
a new one. The function rfind returns npos if an underscore cannot be found in vname. (Search
proceeds from the end of vname.)

(type::parameters::implementation 12a)+=
void type_parameter::renameParameter(string name) {
string tname = tag + underscore + vname;
if (tname # name) return;
char temp[10]; sprintf(temp, "_%d", get counter wvalue());

unint i = vname.rfind(underscore);
if (1 > 0 A i < vname.size()) vname.erase(i, vname.size()-1);

string temp2(temp); vname = vname + temp2;

}

Uses get_counter_value 13a and renameParameter llc.

Comment 2.1.10. Some times, parameters need to be renamed to avoid name capture. We use
a global counter for this purpose.

(type::function declarations 12f)=
void inc_ counter();
int get counter wvalue();

Uses get_counter_value 13a and inc_counter 13a.
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(type::functions 10b)+=
static int counter = 0;
void inc_ counter() { counter++; }
int get counter wvalue() { return counter; }

Defines:
get_counter_value, used in chunk 12.
inc_counter, used in chunks 11 and 12.

Comment 2.1.11. Users can define type synonyms of the form ¢; = t5, where ¢; is an identifier
and to the actual type. These are handled using the following class. The identifier ¢; is stored in
tname; the actual type t5 is stored in actual.

(type::synonyms 13b)=
class type synonym : public type {
public:
type_ synonym(string name, type * ac)
{ tag = name; tname = name; actual = ac; }
~type_ synonym() { delete_ type(actual); }
type * clone() {
// assert(actual); count++; actual->count++; return this; }
assert(actual);return new type_ synonym(tname,actual— clone());}
void deccount() { assert(false); }
bool isSynonym() { return true; }
type * getActual() { return actual; }
string getName() { return actual— getName(); }
private:
type x actual,
string tname;
b

Uses delete_type 10a 10b.

Comment 2.1.12. We support the following base types: boolean, integer, float point number
and string. Natural number is not supported because we can always use integer in its place.

Comment 2.1.13. The following is used to create product types.

(type::tuples 13c)=
class type tuple : public type composite {
public:
type_tuple() { tag = Tuple; }
type x clone();
bool isTuple() { return true; }
string getName();

b

(type::tuples::implementation 13d)=
type * type_ tuple:clone() {
type_ tuple x ret = new type tuple;
for (int =0; ialphaCounit(); i++)
ret—addAlpha(alphali]— clone());
return ret;
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14a (type::tuples::implementation 13d)+=
string type_ tuple::getName() {
string ret = "( ";
for (unsigned int i=0; i£alpha.size()-1; i++)
ret = ret + alphali|—getName() + " * ";
ret = ret + alphalalpha.size()-1]—getName() + ")";
return ret;

Comment 2.1.14. This is used for the construction of function types. It is worth mentioning
that sets and multisets have function types.

Function types of particular interest here are those for transformations. The variable rank
is used to record the rank of transformations. This value can be calculated using compRank.

The functions getSource and getTarget returns the source and target of a transformation. The
function getArg returns the n-th argument.

14b (type::abstractions 14b)=
class type abs : public type composite {
public:
int rank;

type_ abs() { tag = Arrow; rank = -5; }
type_ abs(type * source, type * target) {
tag = Arrow; rank = -5;

addAlpha(source); addAlpha(target);

bool isAbstract() { return true; }
type * clone();
type * getArg(int n);
type * getSource();
type * getTarget();
string getName();
int compRank();
b
Defines:
getArg, never used.
getSource, never used.

getTarget, never used.
Uses compRank 16a.

14c (type::abstractions::implementation 14c)=
type * type_ abs::clone() {
type_ abs * ret = new type abs(alphal0]— clone(), alpha[l]— clone());
ret—rank = rank;
return ret;
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15a (type::abstractions::implementation 14c)+=
string type_ abs::getName() {
string ret;

if (alpha|0]—isComposite())

ret = " (" + alphal|0]—getName() + ") -> "
else ret = alpha[0]—getName() + " -> ";
if (alpha|l]—isComposite())

ret = ret + " (" + alpha|l]—getName() + ")";
else ret = ret + alphall]|—getName();
return ret;

}

15b (type::abstractions::implementation 14c)+=

type * type_ abs::getArg(int n) {
assert(n < rank);
type * p = this;
int temp = 0;
while (temp # n) { p = p—getAlpha(l); temp++; }
return p— getAlpha(0);

¥

Defines:
getArg, never used.

15¢ (type::abstractions::implementation 14c)+=
type * type_ abs::getSource() {
assert(rank # -5);
type x p = this;
for (int =0; i£rank; i++) p = p—getAlpha(l);
assert(p— getAlpha(0)); return p— getAlpha(0);
¥

Defines:
getSource, never used.

15d (type::abstractions::implementation 14c)+=
type * type_ abs:getTarget() {
assert(rank # -5);
type x p = this;
for (int =0; i£rank; i++) p = p—getAlpha(l);
return p—getAlpha(l);
¥

Defines:
getTarget, never used.
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Comment 2.1.15. This function computes the rank of a transformation. We inspect the spine
of the type and count the number of predicate types appearing in it.

16a (type::abstractions::implementation 14c)+=
int type abs::compRank() {
if (alpha|l]—isAbstract() A alpha|0]—isAbstract() A
alpha|0]— getAlpha(1)—getTag() = gBool) {
type_abs * t = dcast<type_abs x>(alpha[l]);
return 1 + t—compRank();

}

return 0;

}

Defines:
compRank, used in chunk 14b.

Comment 2.1.16. Algebraic types are supported using the following classes. The class type_udefined
supports nullary type constructors; the class type_alg supports non-nullary type constructors.
Perhaps it makes sense to combine the two in one type.

16b (type::algebraic types 16b)=

class type udefined : public type {
const vector<string> values;

public:
type_udefined(string & tname, const vector<string> &wals)

: type(tname), values(vals) {}

type_ udefined(string & tname) : type(tname) {}
bool isUdefined() { return true; }
// type * clone() { count++; return this; }
const vector<string> & getValues() { return values; }

b

16¢ (type::algebraic types 16b)+=
class type alg : public type composite {
public:
type_alg(string tid) { tag = tid; }
type_ alg(string tid, vector<type x> x) {

tag = tid,
for (unsigned int i=0; i#£x.size(); i++)
addAlpha(a]i]— clone());

}
type_alg(string tid, type_tuple x ) {
tag = tid,
for (int =0; i#z— alphaCount(); i++)
addAlpha(z— getAlpha(i)— clone());

type * clone() { return new type_alg(tag, alpha); }
string getName();
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17a (type::algebraic types:implementation 17a)=
string type_ alg::getName() {
string ret = " (" + tag;
for (unint i=0; i#alpha.size()-1; i++)
ret = ret + " " + alphali— getName();
ret = ret + " " + alpha|alpha.size()-1]— getName() + ") ";
return ret;

2.1.1 TUnification

Comment 2.1.17. We now discuss type unification. The type unification algorithm given here
is adapted from the one given in [Pey87, Chap.5].

17b (unification.h 17b)=
#ifndef _UNIFICATION_H_
#define _UNIFICATION_H_

#include "terms.h"

#include "types.h"

#include <vector>

#include <utility>

struct term_ type { term x first; type * second; };

extern bool unify(vector<pair<string,type x> > &egqns,type xtvn,type *t);
extern type * apply subst(vector<pair<string, type x> > & eqns, type * 1);
extern type x well Typed(term * t);

extern pair<type *, vector<term_type> > mywellTyped(term * t);

extern type x get type_from_ syn(type x in);

#endif

Defines:
term_type, used in chunks 22b, 23b, 28b, 105, 138, and 143a.
Uses apply_subst 18b, get_type_from_syn 19c, mywellTyped 28b, unify 20, and wellTyped 28a.

17c (unification.cc 17¢)=

#include <iostream>
#include <utility>
#include <vector>
#include <string>
#include "types.h"
#include "unification.h"
using namespace std;

bool unify wverbose = false; // set this to see the unification process
(unification body 18a)
(type checking 28a)
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Comment 2.1.18. The function getBinding returns the binding for parameter x in a type
substitution 6.

(unification body 18a)=
type * getBinding(vector<pair<string, type x> > & eqns, type x z) {
assert(z—isParameter());
string vname = z— getName();
for (unsigned int i=0; iz£eqns.size(); i++)
if (eqns|i].first = vname) return eqns|i.second;
return z;

}

Defines:
getBinding, used in chunks 18b and 20.

Comment 2.1.19. Given a type substitution # and a type t with parameters, apply_subst
computes t6.

(unification body 18a)+=
type * apply subst(vector<pair<string, type x> > & eqns, type x t) {

if (t—isParameter())
return getBinding(egns, t)— clone();

type * ret = t—clone();

for (int =0; #ret—alphaCount(); i++) {
type x temp = apply _subst(egns, ret— getAlpha(i));
delete type(ret— getAlpha(i));
ret—setAlpha(temp, 4);

}

return ret;

}

Defines:
apply_subst, used in chunks 17b, 19b, 20, and 25a.
Uses delete_type 10a 10b and getBinding 18a.

Comment 2.1.20. This function extends a substitution # with an additional equation z = t.
If ¢ is =, then the extension succeeds trivially. Otherwise, unless = appears in ¢, the extension
succeeds.

(unification body 18a)+=
bool extend(vector<pair<string, type x> > & eqns, type * x, type * t) {
assert(x—isParameter());
(delete eqns of the form x = x 18d)
(if x appears in t, return false 19a)
(apply (x,t) to each eqn in equs, extend eqns and return true 19b)

}

Defines:
extend, used in chunk 20.

(delete eqns of the form x = x 18d)=
if (t—isParameter())
if (z—getName() = t—getName()) return true;
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(if x appears in t, return false 19a)=
// case of t not a parameter
set<string> parameters;
t— getParameters(parameters);
// set<string>:iterator p = parameters.begin();
// cout << "parameters : ";
// while (p != parameters.end()) { cout << *p << " "; p++; }
if (parameters.find(x— getName()) # parameters.end())
return false;

Uses getParameters 11b.

(apply (x,t) to each eqn in eqns, extend eqns and return true 19b)=
for (unsigned int i=0; i#£egns.size(); i++) {
type * temp = eqns|i].second;
eqnsli].second = apply_ subst(egqns, temp);
delete_type(temp);
}
pair< string, type x> eqn(z— getName(), t— clone());
eqns.push_back(eqn);
return true;
Uses apply_subst 18b and delete_type 10a 10b.

Comment 2.1.21. This function extracts the actual type of a synonym.

through several redirections to get to the actual type.

(unification body 18a)+=
type * get_type_ from_ syn(type x in) {
type * ret = in;
while (ret—isSynonym())
ret = deast<type_ synonym x>(ret)— getActual();
return ret;

}

Defines:
get_type_from_syn, used in chunks 17b, 20, and 25a.

We may need to go
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Comment 2.1.22. This function returns whether two types tvn and t are unifiable. If one of the
two, say tvn, is a parameter, we will try extending eqns with the equation (tvn = t). Otherwise,
we compare the tags and try to recursively unify the subtypes if the tags match.

(unification body 18a)+=
bool unify(vector<pair<string,type x> > &eqns, type * tun, type *x t) {
(unify::verbose 1 21b)
if (tvn—isSynonym()) tvn = get_type_ from_ syn(tvn);
if (t—isSynonym()) t = get_type_from_syn(t);
(unify::verbose 2 21c)

bool ret = false;
if (tvn—isParameter()) {
type * phituvn = getBinding(eqns, tvn)— clone();

type * phit = apply _subst(egns, t);

// if phitvn == tvn

if (phiton—isParameter()) {

if (tun—getName() = phitun— getName()) {

ret = extend(eqns, tun, phit);
delete_type(phit); delete_ type(phitun);
if (unify_verbose) cerr < ret < endl;
return ret;

} else {
ret = unify(egns, phitvn, phit);
delete type(phit); delete_ type(phitun);
if (unify_verbose) cerr < ret < endl,
return ret;
}
}
// switch place

if (tun—isParameter() = false A t—isParameter())
return unify(eqns, t, ton);

(unify::case of both non-parameters 21a)
return true;

}

Defines:
unify, used in chunks 17b, 21a, 25a, and 26a.
Uses apply_subst 18b, delete_type 10a 10b, extend 18c, getBinding 18a, and get_type_from_syn 19c.
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(unify::case of both non-parameters 21a)=
if (tvn—isParameter() = false A t—isParameter() = false) {

if (tvn—getTag() # t—getTag()) return false;

if (ton—getTag() = Tuple N t—getTag() = Tuple)
if (tvn—alphaCount() # t— alphaCount()) {

if (unify_wverbose) cerr < false < endl;
return false;

}

// unify each component

if (tvn—alphaCount() # t—alphaCount()) {
cerr < "Error in unification. Argument counts don’t match.\n";
cerr € "tvn = " < tun—getName() < endl;
cerr LK "t = " < t—getName() < endl;
assert(false);

}

for (int =0; i#ton— alphaCount(); i++) {
bool r = unify(eqns,tvn— getAlpha(i),t— getAlpha(3));
if (r = false) return false;

}

}

Uses unify 20.

Comment 2.1.23. We print out some information to help debugging.

(unify::verbose 1 21b)=
if (unify_verbose)
cerr € "Unifying " < tun—getName() < " and " < t—getName() <endl;

(unify::verbose 2 21c)=
if (unify _verbose) cerr < "After transformation:\n";
(unify::verbose 1 21b)
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2.1.2 Type Checking

Comment 2.1.24. The type-checking procedure implements the following algorithm. For more
details on type checking and type inference, see, for example, [Mit96, Chap. 11].

WT(C) =« where « is the declared signature of C
WT(z) = {a if WT(z) = o has been established before;

a  otherwise; here, a is a fresh parameter.
WT((try. . tn)) = WT(t;) x -+-x WT(t)

a— f if WT(t) =p and z is free with relative type « in t.
a — 8 where a is a parameter otherwise.

WT(A\x.t) = {
WT((st)) =080 it WT'(s)=a— 8, WT'(t) =+, and o and ~ are unifiable using 6.
The input term is not well-typed if any one of the WT calls on its subterms fails.

22a (type checking actual 22a)=
type x well Typed2(term * t, vector<var_mname> bvars, int scope) {
type x ret = NULL;
(wellTyped2::case of t a constant 23a)
(wellTyped2::case of t a variable 24a)
(wellTyped2::case of t an application 25a)
(wellTyped2::case of t an abstraction 26b)
(wellTyped2::case of t a modal term 26c)
(wellTyped2::case of t a tuple 27a)
return ret;

}

Defines:
wellTyped2, used in chunks 25-28.

Comment 2.1.25. We first look at some data structures. The vector term_types is used to store
the inferred type for each subterm of the input term. The structure var_name is used to handle
variables; see Comment 2.1.28 for more details.

22b (type checking variables 22b)=
vector<term_ type> term_ types;
struct var_name { int vname; string pname; };
Uses term_type 17b.
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Comment 2.1.26. If the input term ¢ is a constant, we find its signature « from the global
constants repository (the function get_signature will halt with an error if ¢ is unknown), rename
all the parameters in « to obtain o/ and then return o/. We need to rename parameters because
some of the parameters in o may have been introduced (and constrained) up to this point in the
type checking process. To illustrate, consider the following type declarations.

top : a — 02
ind:a— (2

The term (top ind) is clearly well-typed. But the type checking procedure will fail if we do not
first rename, say, the first parameter a because the unification procedure will fail when attempting
to equate a and a — (2.

(wellTyped2::case of t a constant 23a)=
if (t—isF() V t—isD()) {

if (t—isint) ret = new type(glnt);

else if (t—isfloat) ret = new type(gFloat);

else if (t—isChar()) ret = new type(gChar);

else if (t—isString()) ret = new type(gString);

else {
ret = gel_ signature(t— cname);
if (ret) { ret = ret—clone(); ret—renameParameters(); }
else return NULL;

(wellTyped2::save n return 23b)

}

Uses get_signature 153c, isChar 33a, isD 30a, isF 30a, isString 33a, and renameParameters 1llc.

Comment 2.1.27. Each subterm is stored in term_types the moment its type is inferred. These
entries may be updated later on when parameters get instantiated further. See Comment 2.1.29.

(wellTyped2::save n return 23b)=
term_ type res; res.first = t; res.second = ret;
term_ types.push_ back(res);
if (t—ptype) delete_ type(t— ptype);
t—ptype = ret—clone();
return ret;
Uses delete_type 10a 10b and term_type 17b.
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Comment 2.1.28. To determine the type of a variable x, we need to know two things:

1. Is it a bound or a free variable?
2. Has it occurred before?

If z is a bound variable that has occurred previously, we just recycle the previously computed
type. Else if x is a bound variable that has not occurred previously, we use the parameter name
that has been assigned earlier to create a new parameter. (See Comment 2.1.32.) Otherwise, if =
is free, we check (in term_types) to see whether a type for = has been inferred earlier. If so, we
return the inferred type. Otherwise, we create a new parameter with a new parameter name.

(wellTyped2::case of t a variable 24a)=
if (t—isVar()) {
if (t—cname = iWildcard) {
ret = new type parameter();
(wellTyped2::save n return 23b)
}
unint start = 0;
for (int =(int)bvars.size()-1; i#-1; i—)
if (t—cname = bvars|i].vname) {
start = scope;
(variable case::lookup previous occurrence 24b)
ret = new type_ parameter(bvars|i|.pname);
(wellTyped2::save n return 23b)

(variable case::lookup previous occurrence 24b)
ret = new type parameter();
(wellTyped2::save n return 23b)
}
if (t—tag = SV) {
for (unint j=0; j#£term_ types.size(); j++)
if (term_ types|j].first—tag = SV) {
if (t—cname = term_ types|j].first—cname) {
ret = term__ types|j|.second— clone();
(wellTyped2::save n return 23b)
}
}
ret = new type parameter();
(wellTyped2::save n return 23b)

}

Uses iWildcard 145 and isVar 30a.

(variable case::lookup previous occurrence 24b)=
for (unint j=start; jAterm_ types.size(); j++)
if (term_ types|j]. first—isVar())
if (t—cname = term_ types|j].first—cname) {
ret = term_ types|j].second— clone();
(wellTyped2::save n return 23b)

}

Uses isVar 30a.

Comment 2.1.29. If the input term is an application of the form (st), we first infer the types
of s and ¢ separately. Assuming the type of s has the form o — 3, we then attempt to unify «
with -, the type of ¢. If there exists a # that unifies the two, we can then return 86 as the type
for (st). We also update entries in term_types with 6 to reflect new knowledge. The variable
vlength keeps track of the part of term_types we can safely change.
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(wellTyped2::case of t an application 25a)=
if (t—isApp()) {

}

unsigned int vlength = term_ types.size();

type x t1 = wellTyped2(t—lc(), bvars, scope);

if (t1—1isSynonym()) t1 = get_type from_syn(t1);
(wellTyped2::application::t1 should have right form 25b)
type * t2 = well Typed2(t—rc(), bvars, scope);

if (=t2) { printErrorMsg(t—rc()); return NULL; }

vector<pair<string, type x> > sins;

bool result = unify(sins, t1— getAlpha(0), t2);

if (—result) { (wellTyped2::application::error reporting2 26a) }
ret = apply _subst(sins, t1—getAlpha(1));

for (unint i=vlength; i£term_ types.size(); i++) {
type x temp = term_ types|i].second;
term_ types|i].second = apply _subst(sins, temp);
delete_type(temp);
}
for (unint j=0; j#sins.size(); j++) delete type(sinsj].second);
sins.clear();
(wellTyped2::save n return 23b)

Uses apply_subst 18b, delete_type 10a 10b, get_type_from_syn 19c, isApp 30a, lc 30e, printErrorMsg 27b,
rc 30e, unify 20, and wellTyped2 22a.

Comment 2.1.30. The type t1 should be a function type. If this is not the case but t1 is a
parameter, we can rescue the situation by making t1 a type of the form a — b, where both a and
b are parameters. (This is equivalent to saying that s has type ¢, and that ¢ = a — b.) If t1 is
not a parameter and not a function type, we have a typing error.

(wellTyped2::application::t1 should have right form 25b)=
if (—=t1) { printErrorMsg(t—lc()); return NULL; }

if (~t1—isAbstract() A t1—isParameter()) {

}

type * temp = tI,
t1 = new type_ abs(temp, new type parameter());
term_ types[term_ types.size()-1].second = t1;

if (=t1—isAbstract()) {

}

int osel = getSelector();
setSelector(STDERR); ioprint("*x* Error: ");

t—lc()—=print(); soprint(™ : "); ioprintin(t1— getName());
ioprintln(" does not have function type.");
setSelector(osel);

return NULL;

Uses getSelector 164 165, ioprint 164 165, ioprintln 164 165, lc 30e, printErrorMsg 27b,
and setSelector 164 165.



2.1. TYPES 26

Comment 2.1.31. Given s: «a — § and ¢t : 7, the term (st) is not well typed if we cannot unify
« and 7.

26a (wellTyped2::application::error reporting2 26a)=
int osel = getSelector();
setSelector(STDERR); t—print(); ioprintln(" is not well typed.");
ioprint(t1— getAlpha(0)— getName()); ioprint(" and ");
ioprint(t2— getName()); ioprintin(" are not unifiable\n");
slns.clear();
unify _verbose = true;
unify(sins, t1— getAlpha(0), t2);
setSelector(osel); unify wverbose = false;
return NULL;
Uses getSelector 164 165, ioprint 164 165, ioprintln 164 165, setSelector 164 165, and unify 20.

Comment 2.1.32. Given a lambda term Az.t, the variable z is given a new parameter name
(stored in bvars), and every occurrence of z in ¢ will use the same parameter name afterwards.

The type checking procedure is simple. We first check the type of t. Then we find the relative
type of x in ¢ (recorded in term_types). If ¢ does not contain z, then we just use the initially
assigned parameter name to create a new parameter. If x has type o and t has type 5, we return
a — B.

26b (wellTyped2::case of t an abstraction 26b)=
if (t—isAbs()) {
unint vlength = term_ types.size();

var_name tmp; tmp.vname = t— fields[0]— cname;
tmp.pname = newParameterName();
bvars.push_ back(tmp);

type * t2 = well Typed2(t— fields[1], bvars, viength);
if (=t2) { printErrorMsg(t); return NULL; }

type x vt = NULL;
for (unint i=vlength; i£term_ types.size(); i++)
if (term_ types|i]. first—is Var(t— fields[0] = cname))
{ vt = term_ types|i].second— clone(); break; }
if (vt = NULL) { vt = new type_ parameter(tmp.pname); }

ret = new type_ abs(vt, t2—clone());
(wellTyped2::save n return 23b)

}

Uses isAbs 30a, isVar 30a, printErrorMsg 27b, and wellTyped2 22a.

Comment 2.1.33. We now look at modal terms. Given [J;t, if we can infer ¢ has type a, then
we can infer [J;t has type «.

26c (wellTyped2::case of t a modal term 26c)=
if (t—isModal()) {
type * ret = well Typed2(t— fields[0], bvars, scope);
if (—ret) { printErrorMsg(t); return NULL; }
ret = ret— clone();
(wellTyped2::save n return 23b)

}

Uses isModal 30a, printErrorMsg 27b, and wellTyped2 22a.
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Comment 2.1.34. The case for tuples is easy. We just infer the types of each component and

then put them together.

(wellTyped2::case of t a tuple 27a)=
if (t—isProd()) {
ret = new type_ tuple;
for (unsigned int i=0; i£t— fieldsize; i++) {
type x ti = well Typed2(t— fields[i], bvars, scope);
if (—ti) { printErrorMsg(t); return NULL; }
ret—addAlpha(ti— clone());

}

(wellTyped2::save n return 23b)

}

Uses isProd 30a, printErrorMsg 27b, and wellTyped2 22a.

(type checking subsidiary functions 27b)=
void printErrorMsg(term * t) {
int osel = getSelector();
setSelector(STDERR); t—print();
ioprintln(" is not well typed."); setSelector(osel);
}
Defines:

printErrorMsg, used in chunks 25-28.
Uses getSelector 164 165, ioprintln 164 165, and setSelector 164 165.

Comment 2.1.35. This is a function written for debugging purposes. It prints out the contents

of term_types.

(type checking subsidiary functions 27b)+=
void print_term_ types() {
int osel = getSelector(); setSelector(STDOUT);
joprintln(" *x* ");
for (unint i=0; i#£term_ types.size(); i++) {
term_ types|i|. first— print();

ioprint(" : "); ioprintln(term_ types|i|.second— getName());

}

setSelector(osel);

}

Uses getSelector 164 165, ioprint 164 165, ioprintln 164 165, and setSelector 164 165.

Comment 2.1.36. We need to free up the memory occupied by the intermediate types inferred

for the subterms.

(type checking subsidiary functions 27b)+=
void cleanup _term_ types() {
// print_term _types();
for (unint i=0; iAterm_ types.size(); i++)
delete_type(term_ types[i].second);
term_ types.clear();
}
Defines:

cleanup_term_types, used in chunk 28a.
Uses delete_type 10a 10b.
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Comment 2.1.37. The function wellTyped is a wrapper around the actual type-checking pro-
cedure wellTyped?2.

(type checking 28a)=
#include <string>
#include <vector>
#include "global.h"
#include "terms.h"

(type checking variables 22b)
(type checking subsidiary functions 27b)
(type checking actual 22a)

type x wellTyped(term * t) {
vector<var_name> buvars;
type * ret = well Typed2(t, bvars, 0);
if (—ret) { printErrorMsg(t); return NULL; }
ret = ret— clone();
cleanup _term_ types();
return ret;

}

Defines:
wellTyped, used in chunks 17b and 149a.
Uses cleanup_term_types 27d, printErrorMsg 27b, and wellTyped2 22a.

Comment 2.1.38. The following is a version of wellTyped that returns both the type of the
term being checked and the type of each subterm computed. The latter is needed for checking
typeof side conditions on statements.

(type checking 28a)+=
pair<type x, vector<term_ type> > mywell Typed(term * t) {

pair<type *, vector<term_ type> > res;
vector<var_name> bvars;
type * ret = well Typed2(t, bvars, 0);
if (—ret) { printErrorMsg(t); res.first = NULL; return res; }
ret = ret— clone();
res.first = ret; res.second = term_ types;
term_ types.clear();
return res;

}

Defines:
mywellTyped, used in chunks 17b and 105.
Uses printErrorMsg 27b, term_type 17b, and wellTyped2 22a.

2.2 Terms

2.2.1 Term Representation

Comment 2.2.1. We use a standard approach to represent terms. A term is a graph of nodes,
where each node is a term-schema as defined. One possible optimization is to distinguish between
boxed and unboxed fields [Pey87, pg. 190]. For a discussion on term representations, see [Pey87,
Chap. 10].

Comment 2.2.2. A term schema can be any one of the following: a syntactical variable (SV), a
variable (V), a function symbol (F), a data constructor (D), an application (APP), an abstraction
(ABS), a product (PROD) or a modal term (MOD). This information is recorded in tag.



2.2. TERMS 29

29a (term::type defs 29a)=
enum kind { SV, V, F, D, APP, ABS, PROD, MODAL };

29b (term parts 29b)=
kind tag;

Comment 2.2.3. Syntactic variables, variables, functions and data constructors have names.
For efficiency considerations, we use integers to represent names. (See Comment 5.0.41 for the
mappings.) Modal terms have indices.

29¢ (term parts 29b)+=
int cname;
char modality;

type x ptype;

29d (term init 29d)=
cname = -5;
modality = -b;
ptype = NULL;

29 (heap term init 29e)=

ret—cname = -5;
ret—modality = -5;
ret—ptype = NULL;

20f (term clone parts 29f)=
ret—cname = cname;
if (tag = MODAL) ret—modality = modality;
// if (ptype) ret->ptype = ptype->clone();

29g (term replace parts 29g)=
cname = t—cname;
if (t—tag = MODAL) modality = t—modality;
// if (t->ptype) ptype = t->ptype->clone();
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Comment 2.2.4. Terms with names are called atomic terms. Terms that does not have names
are called composite terms.

(term::function declarations 30a)=
bool isF() { return (tag = F); }
bool isF(int code) { return (tag = F A cname = code); }
bool isApp() { return (tag = APP); }
bool isD() { return (tag = D); }
bool isD(int code) { return (tag = D A cname = code); }
bool isVar() { return (tag = V); }
bool isVar(int v) { return (tag = V A cname = v); }
bool isAbs() { return (tag = ABS); }
bool isProd() { return (tag = PROD); }
bool isModal() { return (tag = MODAL); }

Defines:
isAbs, used in chunks 26b, 62¢, 69a, and 105.
isApp, used in chunks 25a, 32, 33a, 36, 55b, 56a, 58, 60a, 73, 75b, 78b, 80, 89-91, 105, 159¢c, 160, and 163a.
isD, used in chunks 23a, 33a, 36, 56a, 58, 62d, 64b, 65, 67, 68, 75¢c, 78c, 82d, 105, 159¢, and 160.
isF, used in chunks 23a, 32f, 35, 55b, 56a, 58, 60a, 62b, 68, 69b, 73, 75, 78, 80, 83e, 85b, 87, 105, and 163a.
isModal, used in chunks 26¢, 55c, 80, and 105.
isProd, used in chunks 27a, 63a, and 105.
isVar, used in chunks 24, 26b, 62, 69b, 72a, 77b, and 105.

Comment 2.2.5. The parameters tag and kind does not have default values. They are initialized
in the constructor code with pass-in values.

Comment 2.2.6. Application, abstraction and product terms have subterms. These are captured
in the vector fields.

(term vector parts 30b)=
// vector<term *> fields;
term * fields[10];
unint fieldsize;

(term init 29d)+=
fieldsize = 0;

(heap term init 29¢)+=
ret— fieldsize = 0;

(term::function declarations 30a)+=

term x lc() { /assert(tag == APP);*/ return fields[0]; }
term * re() { /*assert(tag == APP);*/ return fields[1]; }

void insert(term = t) {
fields|fieldsize] = t; fieldsize++;
if (fieldsize > 10) assert(false);
}

Defines:
insert, used in chunks 12c, 33c, 34a, 41a, 49a, 55a, 58—60, 74, 80, 107a, 156¢c, and 158a.
lc, used in chunks 25, 32-36, 55b, 56a, 5862, 65, 67-69, 71-80, 85, 87-89, 91b, 93b, 102, 105, 107a, 109b, 159c,
160, and 163a.
re, used in chunks 25a, 33a, 35, 36, 55, 56, 58-62, 65, 67-69, T1-80, 85, 87, 88a, 91b, 93b, 102, 105, 107a, 109b,
159c¢, 160, and 163a.
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Comment 2.2.7. Certain basic data constructors like numbers can best be dealt with in their
original machine representations. (Otherwise, a lot of conversions from and to strings are needed.)
The variable num replaces the cname field for numbers.

Cloning of isfloat, isint, numi and numf is done in the clone () procedure. We do not have
to worry about them here.

(term bool parts 31a)=
bool isfloat, isint;

(term parts 29b)+=
long long int nums;
double numf;

(term init 29d)+=
isfloat = false; isint = false;

(heap term init 29e¢)+=
ret—isfloat = false; ret—isint = false;

(term replace parts 29g)+=
if (t—tag = D) { isfloat = t—isfloat; isint = t—isint;
numi = t—numi; numf = t—numf, }

Comment 2.2.8. Sometimes we want to prevent a certain subterm from being modified. This is
done by setting a freeze flag.

(term bool parts 31a)+=
bool freeze;

Defines:
freeze, used in chunks 31, 48a, 52, 7la, and 72a.

(term init 29d)+=
freeze = false;

Uses freeze 31f.

(heap term init 29¢)+=
ret— freeze = false;

Uses freeze 31f.

(term replace parts 29g)+=
freeze = t— freeze;

Uses freeze 31f.

Comment 2.2.9. A term of the form (¢; (t2-- (tn—1 tn)---)) can be visualized to take on the
shape of a spine. (Draw it!) The (leftmost) term ¢; is called the tip of the spine. At different
places throughout a computation, we need to access the leftmost term in a nested application
node, and the following two functions provide this service. The input x to the second function
will get assigned the value n — 1. We currently perform a (linear) traversal down the spine. It is
possible to make this go faster if necessary.

We cache the results in spinetip and spinelength.
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(term parts 29b)+=
term x spinetip;
int spinelength;
int spine_ time;

(term init 29d)+=
spinetip = NULL; spinelength = -1; spine_ time = -5;

(heap term init 29e)+=
ret—spinetip = NULL; ret— spinelength = -1; ret—spine_ time = -5;

Comment 2.2.10. All these values become obsolete on replacing.

(term replace parts 29g)+=
spinetip = NULL; spinelength = -1; spine_ time = -5;

(term::function definitions 32¢)=

term x term::spineTip() {
if (spinetip A spinelength > -1 A spine_ time =ltime) return spinetip;
spine__time = ltime;
if (tag # APP) { spinetip = this; spinelength = 1; return spinetip; }
spinelength = 2; spinetip = fields|0];
while (spinetip—isApp())

{ spinetip = spinetip— fields|0|; spinelength++; }

return spinetip;

¥

term * term::spineTip(int & numarg) {
if (tag # APP) { numarg = 0; return this; }
numarg = 1; term * p = fields|0];
while (p—isApp()) { p = p—fields|0]; numarg++; }
return p;

}

Defines:
spineTip, used in chunks 64, 82d, 83e, 87, 90, 111, and 163a.
Uses isApp 30a.

Comment 2.2.11. The following function checks whether the current term has the general form
((f t1) t2), where f is given as input. If spinetip has already been computed, we can do things
slightly faster.

(term::function definitions 32e¢)+=

bool term::isFunc2Args() {
if (spinetip A spinelength = 3 A spinetip—isF()) return true;
return (isApp() A le()—isApp() A le()—le()—isF());

}

bool term::isFunc2Args(int f) {
if (spinetip A spinelength = 3 N\ spinetip—isF(f)) return true;
return (isApp() A le()—isApp() A le()—=lc()—=isE(f));

}

Defines:
isFunc2Args, used in chunks 35, 58, 69b, 71b, 72a, 76-79, 90, 93b, and 111.
Uses isApp 30a, isF 30a, and 1lc 30e.
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Comment 2.2.12. This function checks whether a term is a string.

33a (term::function definitions 32¢)+=
bool term::isAString() {
return (isApp() A le()—isApp() A le()—lc()—isD(iHash)
A le()—=re()—isChar());

bool term::isChar() {
if (isfloat V isint) return false;
return (tag = D A cname > 2000 A cname < 3000);
}
bool term::isString() {
if (isfloat V isint) return false;
return (tag = D A strings.find(cname) # strings.end());

}

Defines:
isAString, used in chunks 36a, 62d, 81a, and 111.
isChar, used in chunks 23a, 36a, and 111.
isString, used in chunks 23a and 111.

Uses iHash 145, isApp 30a, isD 30a, 1c 30e, and rc 30e.

Comment 2.2.13. Constants that are rigid have the same meaning in each possible world. A
term is rigid if every constant in it is rigid.

33b (term::function definitions 32e)+=
bool term::isRigid() {
if (tag = V V tag = D) return true;
if (tag = F) return is_rigid_ constant(cname);
if (tag = ABS) return fields[1]|—isRigid();
if (tag = MODAL) return fields|0|—isRigid();
assert(tag = PROD V tag = APP);
for (unint i=0; i#fieldsize; i++)
if (—fields[i]—isRigid()) return false;
return true;

Comment 2.2.14. The following function creates a new term having the form ((f 1) t2) where
f (given) is a function symbol of arity two. The arguments ¢; and ¢2 needs to be initialized by
the calling function.

33c (terms.cc::local functions 33c)=
term x newT2Args(kind k, int f) {
term x ret = new_term(APP);
ret—insert(new_term(APP)); ret—lc()—insert(new_term(k, f));
return ret;

}

Defines:
newT2Args, used in chunks 59, 63a, 64a, 74, 89b, and 111.
Uses insert 30e, 1c 30e, and new_term 40a.



34a

34b

34c

34d

34e

34f

2.2. TERMS 34

Comment 2.2.15. The following function initializes the two arguments of a term created using
newT2Args.

(term::function declarations 30a)+=
void initT2Args(term * t1, term * t2) {
le()—insert(t1); insert(t2);

Defines:
initT2Args, used in chunks 59, 63a, 64a, 74, and 89b.
Uses insert 30e and 1lc 30e.

Comment 2.2.16. The following function checks whether two terms are equal to each other.
This is currently only used in debugging code.

(term::function definitions 32¢)+=
bool term::equal(term x t) {
if (tag # t—tag) return false;
if (cname # t—cname) return false;
if (modality # t—modality) return false;
(term schema::equal::numbers 34c)
// unint sizel = fieldsize;
// unint size2 = t->fieldsize;
if (fieldsize # t— fieldsize) return false;
for (unint i=0; i#fieldsize; i++)
if (fields[i]— equal(t— fields[i]) = false)
return false;

return true;

}

Defines:
equal, used in chunks 56, 88a, 92c, 101a, and 111.

Comment 2.2.17. We treat numbers in a slightly peculiar way. We will equate an integer and
a floating-point number (even though the types do not agree) if they are the same number. We
do this because the internal arithmetic of Escher can add, subtract, multiply and divide integers
and floating-point numbers to produce another floating-point number. See Comment 3.1.11.

(term schema::equal::numbers 34c)=
if (isint A t—isint A numi # t—numi) return false;
if (isint A t—isfloat A (double)numi # t—numf) return false;
if (isfloat A t—isint A numf # (double)t—numi) return false;
if (isfloat A t—isfloat A numf # t—numf) return false;

Comment 2.2.18. This is used for marking and printing redexes.

(term bool parts 31a)+=
bool redez;

(term init 29d)+=
redex = false;

(heap term init 29¢)+=
ret—redex = false;
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Comment 2.2.19. The variable redex does not really play a part during cloning and reusing.

Comment 2.2.20. A term is printed in the way it is represented. The redex (if one exists) is

marked out using square brackets. Shared nodes are also marked with their reference count.

(term::function definitions 32e)+=
extern const string pve;
void term::print() {

}

Uses getSelector 164 165, getString 147, iPi 145, iSigma 145, ioprint 164 165, isF 30a, isFunc2Args 32f,

if (getSelector() = SILENT) return;
(term schema::print strings 36a)
(term schema::print lists 36b)
if (redex) ioprint(™ [LL ");
(term schema::print if-then-else 36¢)
// if (refcount > 1) ioprint("_s_");
if (cname > 5000) { ioprint(pve); ioprint(cname - 5000); }
else if (cname > 0) ioprint(getString(cname));
else if (isfloat) ioprint(numf);
else if (isint) ioprint(numi);
else if (isFunc2Args()) {
ioprint(" ("); le()—=lc()—=print(); ioprint(" ");
le()—re()—print(); ioprint(™ "); re()—print(); ioprint(")");
} else if (tag = APP A (le()—isF(iSigma) V le()—isF(iP7))) {
if (le()—isF(iSigma)) ioprint("\\exists ");
else ioprint("\\forall ");
re()— fields[0]— print(); iopring(".");
re()— fields[1]— print();
} else if (tag = APP) {
ioprint(" ("); fields|0]— print(); ioprint(" ");
fields|1]—print(); ioprint(")");
} else if (tag = ABS) {
ioprint("\\"); fields[0]— print();
ioprint("."); fields[1]— print();
} else if (tag = PROD) {
int size = fieldsize;
if (size = 0) { ioprint(" O "); return; }
ioprint(" (");
for (int =0; i#£size-1; i++)
{ fields[i]|—print(); ioprint(","); }
fields|size-1|—print(); ioprint(")");
} else if (tag = MODAL) {
ioprint(" [); ioprint(modality); ioprint("1 ");
fields[0]— print();
} else { (print error handling 36d) }
if (redex) ioprint(™ 111 ");

1c 30e, and rc 30e.
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Comment 2.2.21. (Composite) strings are represented as lists of characters. Printing them as
lists is not good for the eyes. What we do here is to collect the characters together and print a
string as a string.

(term schema::print strings 36a)=
if (isAString()) {

string temp = ""; temp += getString(lc()—re()— cname)[1];

term * arg2 = rc();

while (—arg2—isD(iEmptyList)) {
assert(arg2—lc()—re()—isChar());
temp += getString(arg2—lc()—re()— cname)|[1];
arg2 = arg2—rc();

}

ioprint("\""); ioprint(temp); ioprint("\""); return;

}

Uses getString 147, iEmptyList 145, ioprint 164 165, isAString 33a, isChar 33a, isD 30a, 1c 30e, and rc 30e.

Comment 2.2.22. We print a list in the syntactic sugar form.

(term schema::print lists 36b)=
if (isApp() A le()—isApp() A le()—le()—isD(iHash)) {

ioprint("["); le()—re()—print();

term x arg2 = rc();

while (arg2—isD(iEmptyList) = false) {
ioprint(", ");
if (arg2—isApp() A arg2—lc()—isApp() A

arg2—lc()—lc()—isD(iHash))
{ arg2—lc()—=rc()—=print(); arg2 = arg2—rc(); }

else { arg2—print(); break; }

}

ioprint("1");

return,;

}

Uses iEmptyList 145, iHash 145, ioprint 164 165, isApp 30a, isD 30a, lc 30e, and rc 30e.

Comment 2.2.23. We print if-then-else statements in a more human-readable form here.

(term schema::print if-then-else 36c)=
if (isApp() A le()—cname = ilte) {
ioprint("if "); re()— fields[0]—print();
ioprint(" then "); re()— fields[1]— print();
/* ioprint("\n\t"); x/ ioprint(" else "); rc()—fields[2]—print();
return;

}

Uses ilte 145, ioprint 164 165, isApp 30a, 1c 30e, and rc 30e.

(print error handling 36d)=
cerr < "Printing untagged term.\ttag = " < tag < endl;
assert(false);

Comment 2.2.24. In vertical printing, we print the current term vertically (with some inden-
tation). Miscellaneous information about the individual subterms are also printed. This is a
convenient way to look at sharing and other information associated with each node.
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37a (term::function definitions 32¢)+=
void term::print Vertical(unint level) {
if (getSelector() = SILENT) return;
(print white spaces 37b)
if (cname > 5000) { ioprint(pve); ioprint(cname-5000); }
else if (cname > 0)

{ ioprint(getString(cname)); (print extra information 37¢) }
else if (isfloat) { ioprint(numf); (print extra information 37¢) }
else if (isint) { ‘oprint(numi); (print extra information 37¢) }
else if (tag = APP) {

ioprint(" ("); (print extra information 37c¢)

fields[0]— print Vertical(level+1);

fields[1]— print Vertical(level+1);

(print white spaces 37b) ioprint(")\n");

} else if (tag = ABS) {

ioprint("\\"); fields[0]—print(); ioprint(".");

(print extra information 37c)

fields[1]— print Vertical(level+1);
} else if (tag = PROD) {

int size = fieldsize;

if (size = 0)

{ doprint("(O"); (print extra information 37c) return; }
ioprint(" ("); (print extra information 37c)

for (int =0; #size-1; i++) {

fields|i|— print Vertical(level+1); soprint(" ,\n"); }
fields|size-1]— print Vertical(level+1);

(print white spaces 37b) ioprint(")\n");

} else if (tag = MODAL) {
assert(false);
} else { (print error handling 36d) }

}

Defines:
printVertical, used in chunk 111.
Uses getSelector 164 165, getString 147, and ioprint 164 165.

37b (print white spaces 37b)=
for (unint i=0; i#level; i++) ioprint(" ");

Uses ioprint 164 165.

37c (print extra information 37¢)=
toprint("\t\t");
if (refcount > 1) { ioprint("shared"); ioprint(refcount); }
ioprintin();
Uses ioprint 164 165, ioprintln 164 165, and shared 43e.

2.2.1.1 Constraints for Syntactic Variables

Comment 2.2.25. We have a (limited) syntax for specifying constraints on what sort of terms a
syntactical variable can range over. (See the grammar for Escher.) Four types of constraints are
supported at present. The constraint CVAR forces a syntactical variable to range over variables
only; CCONST forces a syntactical variable to range over constants only. The constraint CEQUAL
dictates that the value of one syntactical variable must be equal to the value of one other; The
constraint CNOTEQUAL dictates that the value of one syntactical variable must not be equal
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to the value of one other. For details on how these constraints are implemented, see Comment

3.1.100.

(term::definitions 38a)=
#define CVAR 1
#define CCONST 2
#define CEQUAL 3
#define CNOTEQUAL 4

(term::supporting types 38b)=
struct condition { int tag; int svname; };

(term parts 29b)+=
condition x cond; // only applies to SV

(term init 29d)+=
cond = NULL;

(heap term init 29¢)+=
ret—cond = NULL;

(term clone parts 29f)+=
if (cond) { assert(tag = SV);
ret—cond = new condition;

ret— cond— suname = cond—svname; ret— cond—tag = cond—tag; }

(term replace parts 29g)+=
if (cond) delete cond,
cond = t— cond,
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2.2.2 Memory Management

Comment 2.2.26. We look at some memory management issues in this section. A naive scheme
relying on new and delete is in use at the moment. It is not clear to the author whether a separate
heap-allocating scheme would make the system go a whole lot faster.

Comment 2.2.27. We put wrappers around new and delete to collect some statistics. The
procedure mem_report shows the total number of terms allocated and subsequently freed. This is
used to check whether there is a memory leak.

(term::memory management 39a)=
extern void makeHeap();
extern term * new_term(kind k);
extern term x new_term(kind k, int code);
extern term x new_term_ int(int z);
extern term x new_term_int(long long int z);
extern term x new_term_ float(float z);
extern void mem_ report();

Uses mem_report 40b, new_term 40a, new_term_float 40a, and new_term_int 40a.

(terms.cc::local functions 33c)+=
#ifdef DEBUG_MEM
static long int allocated = 0;
static long int freed = 0;
#endif

#define HEAPSIZE 100000
term heap| HEAPSIZE],
term * avail;

void makeHeap() {
cout < "Sizeof (term)
cout < "Sizeof (char)

" < sizeof(term) < endl,
" K sizeof(char) < endl;

cout € "Sizeof (short) = " < sizeof(short) < endl;
cout € "Sizeof (int) = " < sizeof(int) < endl
cout € "Sizeof (bool) = " « sizeof(bool) < end;

avail = heap;
for (int =0; i#HEAPSIZE-1; i+) {
heap|i].next = &(heap|i+1]);

heap| HEAPSIZE-1].next = NULL;
}

term x myalloc() {
if (avail = NULL) assert(false);
term x ret = avail; avail = avail—next;
(heap term init 29¢)
return ret;

}

inline void mydealloc(term * p) { p—next = avail; avail = p; }
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(terms.cc::local functions 33¢)+=
term x new_term(kind k) {
term x ret = myalloc(); ret—tag = k;
return ret;

}

term x new_term(kind k, int code) {
term x ret = myalloc();
ret—tag = k;
ret—cname = code;
return ret;

}

term x new_term_int(int z) {
term x ret = myalloc();
ret—tag = D;
ret—isint = true; ret—numi = x; return ret;

}

term x new_term_ int(long long int z) {
term x ret = myalloc();
ret—tag = D;
ret—isint = true; ret—numi = x; return ret;

}

term * new_term_ float(float x) {
term x ret = myalloc();
ret—tag = D;
ret—isfloat = true; ret—numf = x; return ret;

}

Defines:
new_term, used in chunks 33c, 39a, 41a, 58, 59, 62-64, 67, 74, 76-78, 80, 93b, and 107a.
new_term_float, used in chunks 39a, 41a, 65, 66, 68, 161, and 162.
new_term_int, used in chunks 39a, 41a, 65, and 66.

(terms.cc::local functions 33c)+=
inline void delete_term(term x z) { mydealloc(z); }

void mem_ report() {
#ifdef DEBUG_MEM
cout < "\n\nReport from Memory Manager:\n";
cout < "\tAllocated " < allocated < endl;
cout < "\tFreed " < freed < endl;
cout < "\tUnaccounted " < allocated - freed < endl < endl;
#endif
Y>>

Defines:
delete_term, used in chunk 41b.
mem_report, used in chunk 39a.
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Comment 2.2.28. Cloning of a term with shared nodes will result in an identical term without

shared nodes.

(term::function definitions 32e)+=
term x term::clone() {

}

term * ret;

if (isfloat) ret = new_term_ float(numyf);

else if (isint) ret = new_term_int(numi);

else if (tag > SV A tag < D) ret = new_term(tag, cname);
else ret = new_ term(tag);

(term clone parts 29f)

int size = fieldsize;
for (int =0; i#£size; i++) ret—insert(fields[i]— clone());
return ret;

Uses insert 30e, new_term 40a, new_term_float 40a, and new_term_int 40a.

Comment 2.2.29. We explicitly free memory instead of relying on destructors. The function
freememory must take node sharing into account. A term is in use while its reference count is still

non-zero.

(term::function definitions 32e)+=

%

void term::freememory() {

}

k-

refcount—;

(freememory error checking 42a)
if (refcount # 0) return;

if (ptype) { delete_ type(ptype); }
if (cond) delete cond,

int size = fieldsize;

for (int =0; i#size; i++) if (fields|i]) fields|i— freememory();
fieldsize = 0
delete_ term(this);

void term::freememory() {

refcount——;
(freememory error checking 42a)
if (refcount # 0) return;

term * p = this;
delete term(this);

if (p—ptype) delete_ type(p— ptype);
if (p—cond) delete p— cond,

int size = p—fieldsize;
for (int =0; i#size; i++)

if (p—fields|i]) p— fields[i]— freememory();
p—fieldsize = 0;

Uses delete_term 40b and delete_type 10a 10b.
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(freememory error checking 42a)=
// if (refcount < 0) { setSelector(STDERR); print(); ioprintln();
// ioprint("refcount = "); ioprintln(refcount); }
assert(refcount > 0);

Uses ioprint 164 165, ioprintln 164 165, and setSelector 164 165.

Comment 2.2.30. This function overwrites the root of the current term with the input term
t. We need to do this if the current node is shared (see §2.2.3) or when the current term is the
root term (with no parent). The procedure is simple. The information on the root of ¢ is copied,
and all the child nodes of t are reused. We first reuse the child nodes of t because we could be
replacing the current term with its children, in which case t can get deleted before we can reuse
its child nodes if we are not careful.

(term::function definitions 32e)+=
void term::replace(term x t) {
tag = t—tag;
(term replace parts 29g)
int tsize = t—fieldsize;
for (int =0; #tsize; i++) t— fields[i|—reuse();

int size = fieldsize;

for (int =0; i#£size; i++) if (fields[i]) fields[]— freememory();
// fields.resize(tsize);

// copy (t->fields.begin(), t->fields.end(), fields.begin());
fieldsize = t— fieldsize;

for (int =0; i#tsize; i++)

fields[i] = t— fields[d];

Defines:
replace, used in chunks 52a, 54b, 56-59, 62a, 78d, 88b, 93b, 107a, and 111.
Uses reuse 43d.
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2.2.3 Sharing of Nodes

Comment 2.2.31. We use reference counting to implement sharing of nodes.

(term parts 29b)+=
int refcount;

(term init 29d)+=
refcount = 1;

(heap term init 29¢)+=
ret—refcount = 1;

Comment 2.2.32. A cloned object of a shared term would have refcount 1. Also, after replacing,
the term retains its original refcount value.

(term::function declarations 30a)+=
term x reuse() { refcount++; return this; }

Defines:
reuse, used in chunks 42b, 53a, 63a, 64a, 69a, Tla, 74-76, 78-80, 87, and 95-97.

(term::function declarations 30a)-+=
bool shared() { return (refcount > 1); }

Defines:
shared, used in chunks 37c and 53a.

Comment 2.2.33. A few notes on sharing. One of the biggest advantages of sharing is that
common subexpressions need only be evaluated once. Sharing of nodes can, however, interfere
with a few basic operations in Escher.

Firstly, I believe the operation of checking for free-variable capture, a test we need to do frequently
during pattern matching (see §3.1.3) and term substitution (see §2.2.6), cannot be done efficiently
if a variable that occurs both free and bound in a term is shared.

Second, sharing of nodes is not always safe. Some statements in the booleans module, espe-
cially the ones that support logic programming (see for example Comment 3.1.14), can potentially
change shared nodes in destructive ways. The extensive use of such sharing-unfriendly statements
in Escher is the primary reason I gave up on sharing.

In the absence of sharing, the computational saving that can be obtained from common subex-
pression evaluation can be achieved using (intelligent) caching.

Having said all that, sharing does have at least one important use in our interpreter; see Comment
3.1.82.

Comment 2.2.34. The following function, which is no longer in use, provides a way to unshare
shared nodes using the side effect of the cloning operation (see Comment 2.2.28). Time complexity:
the entire term needs to be traversed; nodes that are not traversed by this function will be traversed
by clone.

(term::function declarations 30a)+=
void unshare(term * parent, unint id);
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Comment 2.2.35. We should assert(parent) because a shared node, by definition, have at
least two parents.

(term::function definitions 32e)+=
void term::unshare(term x parent, unint id) {

if (refcount > 1) {
assert(parent); term x temp = clone();
parent— fields[id|— freememory(); parent— fields|id] = temp
return; }

int size = fieldsize;

for (int =0; i#£size; i++) fields[i|—unshare(this, i);

2.2.4 Free and Bound Variables

Comment 2.2.36. One must be careful when dealing with free and bound variables. This is
something that is not difficult to get right, but incredibly easy to get wrong! So please pay some
attention.

Definition 2.2.37. An occurrence of a variable x in a term is bound if it occurs within a subterm
of the form \z.t.

Definition 2.2.38. An occurrence of a variable in a term is free if it is not a bound occurrence.
Fact 2.2.39. A variable is free in a term iff it has a free occurrence.

Comment 2.2.40. The following function returns all the free variables inside a term. It is

assumed that we have called 1labelVariables on the term to initialize all the labels and binding
labels.

Comment 2.2.41. Computed free variables are cached in the array frvars. The flag freevars_computed
tells us whether frvars has been initialized. An array instead of a set is used to store the free
variables. This means free variables with multiple occurrences will be recorded multiple times.

We need to record multiple occurrences; see Comment 4.1.11. Further, using an array is faster

than using a set.

(term bool parts 31a)+=
bool freevars_ computed,

(term parts 29b)+=
int time_ computed,

(term vector parts 30b)+=
int frvars[20];
int fruarsize;

(term init 29d)+=
frvarsize = 0
freevars_computed = false;
time_ computed = -b;

(heap term init 29e)+=
ret— froarsize = 0;
ret— freevars_ computed = false;
ret—time_ computed = -5;
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Comment 2.2.42. These values become obsolete on replacing.

(term replace parts 29g)+=
frvarsize = 0;
freevars_computed = false;
time_ computed = -5;

(term::function definitions 32e)4+=
void term::getFreeVars() {

}

Defines:

if (freevars_ computed A time_ computed = ltime) return;

frvarsize = 0;
freevars__computed = true; time_computed = ltime;

if (tag = D V tag = F) return;
if (tag = V) { frvars[0] = cname; frvarsize = 1; return; }
if (tag = ABS) {

fields|1]— getFree Vars();

for (int i=0; i#fields[1]— frvarsize; i++) {
if (fields[1]— frvars[i] = fields[0]— cname) continue;
frvars|frvarsize] = fields[1]— frvars|i;
frvarsize++;
}
assert(frvarsize < 20);
return;
}
for (unint i=0; #fieldsize; i++) {
fields|i|— getFree Vars();
for (int j=0; j#£fields[i]— frvarsize; j++) {
if (j > 0 A fields[i]|—frvars[j] = fields|i]— frvars|j-1])
continue;
frvars|frvarsize] = fields|i|— frvars|j;
frvarsize++;

}

assert(frvarsize < 20);

}

return;

getFreeVars, used in chunks 47b, 48b, 105, and 111.

Comment 2.2.43. For terms that stay unchanged throughout the whole computation (e.g. pro-
gram statements), freeness checking of variables can be done (slightly) more efficiently by flagging
each bound variable in the term directly up front. This is achieved using the following function
labelStaticBoundVars().

Comment 2.2.44. We first look at the free parameter. To ensure safe use, the free parameter is
only valid if the validfree parameter is true. (The function labelStaticBoundVars is responsible

for setting this latter parameter. Its value will get set to false during cloning and replacing.)

(term bool parts 31a)+=
bool free;
bool validfree;
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(term init 29d)+=
validfree = false;

(heap term init 29e)+=
ret—wvalidfree = false;

Comment 2.2.45. If the whole term ¢ on which 1labelBoundVars is called is to be cloned, then
the existing value of the free parameter would remain correct. However, if only a subterm ¢; of
t is to be cloned, then some variables that are bound in ¢ can become free in t;. Variables that
are free in ¢ would remain free in ¢; though. However, if ¢ (respectively ¢1) is then subsequently
substituted into another term (using the mechanism of syntactical variables), then free variables
in ¢ (respectively t1) can become bound. For all these reasons, we will not attempt to recycle
values of free parameters during cloning and replacing.

(term clone parts 29f)+=
ret—validfree = false;

Comment 2.2.46. Ditto for replacing. Free variables can become bound after replacing while
bound variables remain bound after replacing. The trouble here is that we do not really want to
traverse the input graph to label the variables. At present, we only use the free parameters inside
the head of a program statement during pattern matching. We will just mark in the replace code
that proper handling of the free parameter is not yet implemented.

(term replace parts 29g)+=
validfree = false;

(term::function declarations 30a)+=
bool isFree() { assert(tag = V A validfree); return free; }

Defines:
isFree, used in chunks 53h, 96, 97, and 101c.

Comment 2.2.47. A straightforward tree traversal is used to label the bound variables. Bound
variables inside a lambda term are marked before the free variables. Hence the way labelling is
done inside the (tag == V) case.

(term::function definitions 32¢)4=
void term::unmark Validfree() {
validfree = false;
for (unint i=0; #fieldsize; i++) fields|i|—unmark Validfree();
}
void term::labelStaticBoundVars() {
if (tag= F V tag= DV tag = SV) return;
if (tag = V) { if (—wvalidfree) { validfree = true; free = true; }
return; }
if (tag = ABS) {
fields[0]—validfree = true; fields|0]— free = false;
fields[1]— labelBound(fields[0]— cname);
fields[1]—labelStaticBound Vars();
return;
}
int size = fieldsize;
for (int i=0; i#£size; i++) fields[i|—labelStaticBound Vars();
}

Defines:
labelStaticBoundVars, used in chunks 52a, 54b, 89b, 111, and 141d.
Uses labelBound 47a.
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(term::function definitions 32e)+=

void term::labelBound(int z) {
if (tag= F V tag= D V tag = SV) return;
if (tag = V) { if (cname = z) { validfree = true; free = false; }

return; }

if (tag = ABS) { fields[1]—labelBound(x); return; }
int size = fieldsize;
for (int =0; i#size; i++) fields|i|—labelBound(x);

}

Defines:
labelBound, used in chunks 46f and 111.

Comment 2.2.48. The functions isFree and isFreeInside discussed above allows one to check
whether a subterm s of a term ¢ occurs free inside ¢t. Some times we want to check whether a
variable x has a free occurrence inside another term. The following functions allow us to do that.
Some occurrences of the input variable could be bound. We return upon seeing the first free
occurrence the input variable.

There are two versions of this function. The first, occursFree, uses getFreeVars to compute all
the free variables in a term and then check whether var is inside this set. If occursFree is called
repeatedly by the same term, this caching of computed free variables is beneficial. The second,
occursFreeNaive, performs a simple traversal of the term to check whether var occurs free.

(term::function definitions 32e)+=
bool term::occursFree(int var) {
getFree Vars();
for (int =0; #frvarsize; i++) if (frvars|i] = var) return true;
return false;

}

Defines:
occursFree, used in chunks 69b, 72a, 73, 77b, 108b, and 111.
Uses getFreeVars 45b.

(term::function definitions 32e)+=
bool term::occursFreeNaive(int var) {
vector<int> boundv; return occursFreeNaive(var, boundv);
}

Defines:
occursFreeNaive, used in chunks 48a, 72a, and 111.
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(term::function definitions 32e)+=
bool term::occursFreeNaive(int var, vector<int> boundv) {
if (tag = F' V tag = D) return false;
if (tag= V) {
if (freeze) return false;
if (¢cname = var A inVector(cname,boundv)= false) return true;
return false; }
if (tag = ABS) {
boundv.push_ back(fields|0]— cname);
return fields[1]— occursFreeNaive(var, boundv);
}
int size = fieldsize;
for (int =0; i#size; i++)
if (fields|i]— occursFreeNaive(var, boundv)) return true;
return false;

}

Uses freeze 31f, inVector 159a, and occursFreeNaive 47c.

Comment 2.2.49. This function checks whether any free variable inside the calling term is
captured by at least one of the bounded variables. The index of the captured variable is recorded
in captd. We store pointers to binding abstraction terms instead of strings for two reasons. First,
we sometimes need to change the name of a binding variable when a free variable is captured. This
happens, for example, during term substitution. Having a pointer to the abstraction term allows
us to jump straight to the offending term. Second, in terms of memory usage, storing pointers to
terms is cheaper. If we want to use a set instead of a vector to store the binding variables (maybe
for efficiency reasons), it is easy to put a wrapper around term_schema * and define a pointer p
to be less than q iff p->fields[0] ->name < g->fields[0]->name.

(term::function definitions 32¢)4=
bool term::captured(vector<term x> & bvars, int & captd) {
if (bvars.empty()) return false;
getFree Vars();

int bsize = bvars.size();
for (int i=0; i#Afrvarsize; i++)
for (int j=0; j#£bsize; j++)
if (frvars[i] = bvars|j]— fields[0]— cname) {
captd = j; return true; }
return false;

}

Defines:
captured, used in chunks 54a, 102a, 103d, and 111.
Uses getFreeVars 45b.
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Comment 2.2.50. For small terms, the use of vector for both frvars and bvars is probably
okay. For larger terms, the use of set (red-black trees) could be much better.

Comment 2.2.51. The following function collects in a multiset all the bound variables in a term.

(term::function definitions 32¢)+=
void term::collectLambda Vars(multiset<int> & ret) {
if (tag > SV A tag < D) return;
if (tag = ABS) {
ret.insert(fields[0]— cname);
fields[1]— collectLambda Vars(ret); return;
}
for (unint i=0; i#fieldsize; i++)
fields[i]— collectLambda Vars(ret);

}

Uses insert 30e.

2.2.5 Variable Renaming

Comment 2.2.52. Different forms of variable renaming are required in performing computations.
We discuss these operations in this section.

Comment 2.2.53. This function renames all occurrences of a variable varl inside the current
term to var2. Note that both free and bound occurrences are renamed. This is okay since the
function is only called (sensibly) as a subroutine by the other variable-renaming functions in this
section.

(term::function definitions 32e)+=
void term::rename(int varl, int var2) {
if (tag= SV V tag = F V tag = D) return;
if (tag = V) { if (cname = varl) cname = var2; return; }
int size = fieldsize;
for (int =0; i£size; i++) fields|i|—rename(varl, var2);
}

Defines:
rename, used in chunks 50 and 111.
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Comment 2.2.54. This function renames one particular lambda variable in a term. This is used
in term substitutions in the case when a free variable capture occurs.

50 (term::function definitions 32e¢)4+=
void term::renameLambdaVar(int varl, int var2) {
freevars_ computed = false;
if (tag= SV V tag= V'V tag= F V tag = D) return;
if (tag = ABS) {
if (fields[0]— cname = varl) {
fields|0]— cname = var2;
fields|1]—rename(varl, var2);
}
// if lambda variables are distinct, this is not needed
fields[1]— renameLambda Var(varl, var2);
return;
}
int size = fieldsize;
for (int i=0; i#£size; i++)
fields[i]— renameLambda Var(varl, var2);

Defines:
renameLambdaVar, used in chunks 54a and 111.
Uses rename 49b.
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2.2.6 Term Substitution

Definition 2.2.55. [L1003, pg. 55] A ¢term substitution is a finite set of the form {1 /t1, ..., 2, /tn}
where each x; is a variable, each t; is a term distinct from z;, and x4, ..., z, are distinct.

Comment 2.2.56. Each pair z;/t; is represented as a structure as follows.

(term::type defs 29a)+=
struct substitution {
int first;
term x second,
substitution() { second = NULL; }
substitution(int v, term x t) { first = v; second = t; }
b
Defines:
substitution, used in chunks 52, 54b, 57a, 69, 71a, 75a, 78d, 79b, 87, 88a, 99-101, 107-111, and 140.

Definition 2.2.57. [L1003, pg. 56] Let ¢t be a term and 6 = {x1/t1, ..., 2z, /t,} a term substitution.
The instance t0 of ¢t by 0 is the well-formed expression defined as follows.

1. If t is a variable x; for some i € {1,...,n}, then x;0 = t,.
If t is a variable y distinct from all the x;, then y0 = y.

2. If t is a constant C, then C'0 = C.
3. If t is an abstraction Az;.s, for some i € {1,...,n}, then
(Ax;.8)0 = Axi.(s{z1/t1, .- i1 /tic1, Tiv1 [Eit1, - -y Tn/Tn})-
If ¢ is an abstraction \y.s, where y is distinct from all the z;,

(a) if for some i € {1,...,n}, y is free in ¢; and x; is free in s, then

(My.s)8 = Az.(s{y/z}9)
where z is a new variable.
(b) else (M\y.s)0 = \y.(s6);

4. If ¢ is an application (u v), then (u v)0 = (uf v0).
5. If ¢ is a tuple (t1,...,tn), then (t1,...,6,)0 = (t16,...,t,0).

Comment 2.2.58. Term substitutions are performed by the function subst. There are two
versions of it, one deals with singleton sets, the other with non-singleton sets. In both cases, real
work is done by the function subst2.

Comment 2.2.59. A single traversal of the tree achieves the desired parallel-instantiation-of-
variables effect.

Comment 2.2.60. Given ¢ and 0, the function subst will handle the special case where ¢t is a
variable (and thus free) or a syntactical variable. All other cases are handled by subst2. Before
calling subst2, we call labelStaticBoundVars to label the variables. The free values computed
are safe for use here because they are read only once by subst2 and changes introduced by subst?2
are all localized on the spots where free variables live in the term.

Comment 2.2.61. Pointers to terms in subs are all pointers to subterms in an existing structure
that will be deleted after the term substitution. For that reason, these pointers can be safely
reused once, but not more than that.

For the special case where the current term is a variable or a syntactical variable, we need to make
the term replacement in place using replace.
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52a (term::function definitions 32¢)+=
void term::subst(vector<substitution> & subs) {
if (tag= VV tag= SV) {
if (freeze) return;
int size = subs.size();
for (int i=0; i#£size; i++)
if (cname = subs[i].first) {
this—replace(subs|i].second); return; }

return;

labelStaticBound Vars();
vector<term x> bindingAbss;
subst2(subs, bindingAbss, NULL);
unmark Validfree();

}

Defines:
subst, used in chunks 54b, 57a, 69, 71la, 76¢c, 78d, 79b, 87-89, 92¢c, 111, and 140.
Uses freeze 31f, labelStaticBoundVars 46f, replace 42b, subst2 52b, and substitution 51.

Comment 2.2.62. All the complications in Definition 2.2.57 are in the abstraction case. Oper-
ationally, checking all those conditions every time we encounter an abstraction is expensive. We
can perform these checks only when strictly necessary by delaying them until before we apply a
substitution, that is, until we see a free variable in ¢ that matches one of the variables in 6.

52b (term::function definitions 32e)4+=
void term::subst2(vector<substitution> & subs, vector<term x> bindingAbss,
term xx pointer) {
if (tag = SV) { if (freeze) return; (subst2::case of SV 52¢) }
if (tag = V) { if (freeze) return; (subst2::case of V 53h) }
if (tag = F' V tag = D) return,;
if (tag = ABS) {
if (fields|0]—tag = SV)
fields|0]— subst2(subs, bindingAbss, & fields|0]);
bindingAbss.push_ back(this);
fields[1]— subst2(subs, bindingAbss, & fields[1]);
return;
}
int size = fieldsize;
for (int =0; i#£size; i++)
fields[i]— subst2(subs, bindingAbss, & fields|i]);

Defines:
subst2, used in chunks 52a, 54b, and 111.
Uses freeze 31f and substitution 51.

Comment 2.2.63. Term substitution is not formally defined for syntactical variables. It should
behave like a free variable (see Comment 2.2.65), except that we do not have to worry about free
variable capture.

52c (subst2::case of SV 52¢c)=
int size = subs.size();
for (int =0; i#£size; i++)
if (cname = subs|i].first) { (subst2::replace by ti 53a) return; }
return;
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Comment 2.2.64. See the first part of Comment 2.2.61 for why we do what we do here. The
parent pointer must exist because the case where it does not exist is handled by subst.

(subst2::replace by ti 53a)=
assert(pointer);
this— freememory();
if (—subs[].second—noredex N subs|i].second— shared())
xpointer = subs[i].second— clone();
else xpointer = subs|i|.second—reuse();
Uses reuse 43d and shared 43e.

(term bool parts 31a)+=
bool noredexz;

(term init 29d)+=
noredex = false;

(heap term init 29e)+=
ret—noredex — false;

(term clone parts 29f)+=
ret—mnoreder = noredex;

(term replace parts 29g)+=
noredex = t—mnoreder;

(term::function declarations 30a)+=
void setNoRedex() {
noredex = true;
for (unint i=0; #fieldsize; i++)
fields|i]—setNoRedex();

Comment 2.2.65. We now look at the tag == V case. If the current term is a bound variable
in t, then the first part of Definition 2.2.57 (3) applies and nothing changes. If the current term
is a free variable in ¢ and does not occur in 6, the second part of Definition 2.2.57 (1) applies and
again nothing happens. If the current term is a free variable in ¢ that matches an z; in 6, then the
first part of Definition 2.2.57 (1) applies and we substitute the current term with ¢;. Before we
do that, however, we check whether any free variable in ¢; is captured by any A abstraction that
encloses the current term. If yes, part (a) of Definition 2.2.57 (3) applies and we must rename the
offending A variable before replacing the current term with ¢;. Otherwise, part (b) of Definition
2.2.57 (3) applies and we can just go ahead and replace the current term with ¢;.

(subst2::case of V 53h)=
if (isFree() = false) return;
int size = subs.size();
for (int i=0; i#size; i++) {
if (cname # subs|i].first) continue;
(subst2:free variable captured 54a)
(subst2::replace by ti 53a)
return;
}
return;
Uses isFree 46e.
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(subst2:free variable captured 54a)=
int k;
while (subs|i|.second— captured(bindingAbss,k))
bindingAbss|k|—renameLambda Var(bindingAbss[k]— fields|0] = cname,newP Var());
Uses captured 48b, newPVar 148c, and renameLambdaVar 50.

Comment 2.2.66. The use of captured (hence the use of cached computed free variables) here
warrants some caution. If subs[i].second does not remain unchanged throughout the term
substitution process, errors can creep in. We now argue that subs[i].second stays unchanged
throughout.

Term substitution is only used in two places in Escher. The first place is in the construction
of body instances after successful pattern matching on the head of a statement. (See Comment
3.1.71.) The use of subst has no problem here because all the terms in 6 are in the matched redex,
whereas we only do surgery on the (cloned) body of a statement.

The other place term substitutions take place is in some of the internal simplification routines
described in §3.1.1. Such uses only ever involve a single pair {x/¢}. In all routines except beta
reduction, ¢ will remain unchanged because of the requirement that x does not occur free in ¢t. In
beta reduction (see Comment 3.1.14), it is easy to see that ¢ remains unchanged since substitution
is a once off operation. That is, even if & occurs free in ¢, it will never be substituted. (Otherwise,
we will have an infinite recursion.)

Comment 2.2.67. The following is the version of subst that handles singleton term substitutions.
We make a vector out of the single pair and use subst2 to do the job.

(term::function definitions 32e)+=
void term::subst(substitution & sub) {
if (tag= VV tag= SV) {
if (¢cname = sub.first) this—replace(sub.second); return; }

labelStaticBound Vars();
vector<term x> bindingAbs;
vector<substitution> subs; subs.push_ back(sub);
subst2(subs, bindingAbs, NULL);
unmark Validfree();

}

Uses labelStaticBoundVars 46f, replace 42b, subst 52a, subst2 52b, and substitution 51.
Comment 2.2.68. A correct implementation of substitution should get the following right. Given
the statement

(func z) = \x.\y.\x.(&& z (|| x y)).
and the query

(func (f x y)),

Escher should produce the following

\pveO.\pvel.\pveO. (&& (£ x y) (|| pveO pvel)).

Notice that two free variables got captured along the way.



55a

55b

55¢

2.2. TERMS 95

2.2.7 Theorem Prover Helper Functions

Comment 2.2.69. We now look at some functions that check whether a given term satisfy some
properties. These functions are needed by the theorem prover.

Comment 2.2.70. A free variable is a variable with a cname that is larger or equal to 100000.

(term::function definitions 32e)+=
bool isUVar(term x t) { return (t—tag = V A t—cname > 100000); }
bool isUVar(int cn) { return (cn > 100000); }

bool term::containsFree Variable() {
if (tag = V) return isUVar(cname);
for (unint i=0; i#fieldsize; i++)
if (fields[i]— containsFree Variable()) return true;
return false;

}

void term::collectFree Variables(set<int> & fvars) {
if (tag = V A isUVar(cname)) fvars.insert(cname);
for (unint i=0; i#fieldsize; i++)
fields[i|— collectFree Variables(fvars);
return;

}

Defines:
collectFreeVariables, used in chunk 111.
containsFreeVariable, used in chunk 111.
isUVar, used in chunks 108b and 111.
Uses insert 30e.

Comment 2.2.71. This next function checks whether the current term has the form —¢ for some

¢.

(term::function definitions 32¢)+=
bool term::isNegation() { return (isApp() A le()—isF(iNot)); }

Defines:
isNegation, used in chunks 55¢c, 56b, and 111.
Uses iNot 145, isApp 30a, isF 30a, and 1c 30e.

Comment 2.2.72. This function checks whether the current term has the form —0;-¢ (= <o)
for some ¢.

(term::function definitions 32e)+=
bool term::isDiamond() {
return (isNegation() A re()—isModal() N
re()— fields[0]—isNegation());
}
Defines:

isDiamond, used in chunk 111.
Uses isModal 30a, isNegation 55b, and rc 30e.
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Comment 2.2.73. The next function checks whether the input term ¢2 is the negation (at the
syntactic level only) of the calling term ¢1. We have to worry about symmetries here.

56a (term::function definitions 32e)4=
bool term::isNegationOf(term * t2) {
term x t1 = this;
if ((t1—isD(iTrue) A t2—isD(iFalse)) V
(t1—isD(iFalse) N t2—isD(iTrue)))
return true;
if (t2—isApp() A t2—lc()—isF(iNot) A t1—equal(t2—rc()))
return true;
if (t1—isApp() A t1—=le()—isF(iNot) A t2—equal(t1—rc()))
return true;
return false;
}
Defines:

isNegationOf, used in chunk 111.
Uses equal 34b, iFalse 145, iNot 145, iTrue 145, isApp 30a, isD 30a, isF 30a, lc 30e, and rc 30e.

Comment 2.2.74. This function strips off double negations from a term.

56b (term::function definitions 32¢)4+=
void term::stripNegations() {
if (isNegation() A re()—isNegation()) {
term x term = re()—re();
re()— fields[1] = NULL;
this—replace(term);

}

Defines:
stripNegations, used in chunk 111.
Uses isNegation 55b, rc 30e, and replace 42b.

Comment 2.2.75. Sometimes, we need to replace a subterm s in ¢t by another term r. The
following function performs this operation. Note that free-variable capture can occur as a result;
no attempt is made to check for this condition.

56¢ (term::function definitions 32¢)+=
bool term::termReplace(term x s, term * r, term * parent, int id) {
if (equal(s)) {
if (parent = NULL) this—replace(r— clone());
else { parent— fields|id]— freememory();
parent— fields[id] = r—clone(); }
return true;
}
bool ret = false;
int size = fieldsize;
for (int =0; i#£size; i++)
ret = (ret V fields[i|—termReplace(s, r, this, i));
return ret;
}
Defines:

termReplace, used in chunk 111.
Uses equal 34b and replace 42b.
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Comment 2.2.76. The function matchReplace takes a term s having the form [J;; <Ly, a
term 7 having the form U;, ---0;, x, and replaces every subterm ¢ of the calling term such that
t = s6 for some 6 with the term 6. We find 0 using the redex_match function used for pattern
matching. This is perhaps a lazy way of doing things....

(term::function definitions 32e)+=
extern bool redex match(term x head, term x body, vector<substitution> & theta);

bool term::matchReplace(term x s, term x 1, term x parent, int id) {
vector<substitution> theta,
if (redex_match(s, this, theta)) {
term x 12 = r—clone();
r2— subst(theta);
if (parent = NULL) this—replace(r2);
else { parent— fields|id|— freememory();
parent— fields[id| = r2; }
return true;
}
bool ret = false;
int size = fieldsize;
for (int =0; i#size; i++)
ret = (ret \V fields[i|—matchReplace(s, r, this, i));
return ret;

}

Defines:
matchReplace, used in chunk 111.
Uses redex_match 99a 99b 100a, replace 42b, subst 52a, and substitution 51.

Comment 2.2.77. We normalise a term to contain only some minimal set of system-defined
constants. This is done in two steps. In the first step, we perform the basic transformations. This
process generates many double negations. We remove these in the second step.

(term::function definitions 32¢)+=
term x term:normalise()
{ return (this—normalisel())—normalise2(); }

Defines:
normalise, used in chunks 58, 107a, and 111.
Uses normalisel 58 and normalise2 60a.
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Comment 2.2.78. This next function transforms the calling term into normal form. A term is
in normal form if it contains only the following system-defined function symbols: False, not, |||,
<(= notOnot) and 3.

(term::function definitions 32e)+=
term x term::normalisel() {

for (unint i=0; i#fieldsize; i++)
fields[i] = fields[i]—normalise();

term *x ret;

if (isD(iTrue)) {
// ret = new_term(APP); ret->lc = new_term(F, iNot);
// ret->rc = new_term(D, iFalse);

ret = new_term(APP); ret—insert(new_term(F, iNot));
ret—insert(new_term(D, iFalse));
this—replace(ret); return this;
}
if (isFunc2Args(iImplies)) {
le()—le()—cname = iO0r;
ret = new_ term(APP);
// ret->lc = new_term(F, iNot);
// ret->rc = le->rc;
ret—insert(new_ term(F, iNot));
ret—insert(lc()—rc());
le()—fields[1] = ret;
return this;
}
if (isFunc2Args(iAnd)) { (normalisel::and 59a) }
if (isFunc2Args(ilff)) { (normalisel::iff 59b) }
if (isApp() A le()—isF(iP1)) {
le()— cname = iSigma;
ret = new_ term(APP);
ret—insert(new_ term(F, iNot));
ret—insert(rc()— fields[1]);
re()— fields[1] = ret;
ret = new_term(APP); ret—insert(new_term(F, iNot));
ret—insert(this);
return ret;

}

return this;

}

Defines:
normalisel, used in chunks 57b, 59b, and 111.

Uses iAnd 145, iFalse 145, iIff 145, iImplies 145, iNot 145, iOr 145, iPi 145, iSigma 145, iTrue 145, insert 30e,
isApp 30a, isD 30a, isF 30a, isFunc2Args 32f, 1c 30e, new_term 40a, normalise 57b, rc 30e, and replace 42b.
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Comment 2.2.79. We turn a formula of the form (&& p q) into another formula (|| (not p)
(not q)).

(normalisel::and 59a)=
ret = new_term(APP);
// ret->lc = new_term(F, iNot);
ret—insert(new_ term(F, iNot));
term * arg2 = newT2Args(F, iOr);
term x arg2l = new_term(APP);
// arg21->lc = new_term(F, iNot); arg21->rc = lc->rc->clone();
arg21—insert(new_term(F, iNot)); arg21—insert(lc()—rc()— clone());
term x arg22 = new_term(APP);
// arg22->lc = new_term(F, iNot); arg22->rc = rc->clone();
arg22—insert(new _term(F, iNot)); arg22—insert(rc()— clone());
arg2—init T2Args(arg21, arg22);
// ret->rc = arg2;
ret—insert(arg2);
this—replace(ret); return this;

Uses iNot 145, iOr 145, initT2Args 34a, insert 30e, lc 30e, newT2Args 33c, new_term 40a, rc 30e,
and replace 42b.

Comment 2.2.80. We change a formula of the form (iff p q) into a formula of the form
(&& (Il (not p) @) (Il (not g) p)) and then normalise again to turn the conjunction into a
disjunction.

(normalisel::iff 59b)=
ret = newT2Args(F, iAnd);
term * argl = newT2Args(F, iOr);
term * argla = new_term(APP);
// argla->lc = new_term(F, iNot); argla->rc = lc->rc->clone();
argla—insert(new_term(F, iNot)); argla—insert(le()—re()— clone());
argl—initT2Args(argla, re()— clone());
term * arg2 = newT2Args(F, iOr);
term x arg2a = new_term(APP);
// arg2a->lc = new term(F, iNot); arg2a->rc = rc->clone();
arg2a— insert(new_term(F, iNot)); arg2a— insert(rc()— clone());
arg2— init T2Args(arg2a, lc()—re()— clone());
ret—init T2Args(argl, arg2);
ret = ret—normalisel();
this—replace(ret); return this;

Uses iAnd 145, iNot 145, iOr 145, initT2Args 34a, insert 30e, 1lc 30e, newT2Args 33c, new_term 40a,
normalisel 58, rc 30e, and replace 42b.
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60a (term::function definitions 32¢)+=
term * term::normalise2() {
if (isApp() N re()—isApp() A le()—isF(iNot) A
re()—le()—isF(iNot)) {
term x ret = rc()—re();
re()—fields[1] = NULL;
freememory();
ret = ret—normalise2();
return ret;
}
for (unint i=0; i#fieldsize; i++)
fields[i] = fields[i]—normalise2();
return this;

}

Defines:
normalise2, used in chunks 57b and 111.
Uses iNot 145, isApp 30a, isF 30a, 1c 30e, and rc 30e.

Comment 2.2.81. The next function allows us to collect together all the function symbols in a
term.

60b (term::function definitions 32e)4+=
void term::collectFunctionNames(set<int> & x) {
if (tag = F) { x.insert(cname); return; }
for (unint i=0; i£fieldsize; i++)
fields|i|— collect FunctionNames(x);

}

Uses insert 30e.



Chapter 3

Equational Reasoning

3.1 Term Rewriting

3.1.1 Internal Rewrite Routines

Comment 3.1.1. To capture precisely and completely statement schemas in the booleans module,
some of which have complicated side conditions on syntactical variables, we implement them as
algorithms. These algorithms form the internal rewrite module of Escher, and they are called
before any other program statements.

Comment 3.1.2. This next function implements the following equality statements:

=:a—a— 1
(Cz1...2,=Cy1...yn) = (@1 =y1) A+ A (Tn = Yn)
% where C is a data constructor of arity n.
(Czy...2pn=Dys...yn) =1
% where C and D are data constructors of arity n and m respectively, and C # D.

O=0)=T
((x17"'7xn):(ylv"'7y7l)):($1 :yl)/\"'/\(xn:yn)
% where n = 2,3,... .

61 (term::function definitions 32e)+=
bool term::simplifyEquality(term * parent, unint id) {
bool changed = false;
term x ret = this;
term x t1 = le()—re(), * t2 = re();
(simplifyEquality::local variables 63d)

(simplifyEquality::identical variables and function symbols 62b)
(simplifyEquality::irrelevant cases 62c)

(simplifyEquality::case of strings 62d)

(simplifyEquality::case of products 63a)

(simplifyEquality::case of applications 64a)

simplifyEquality _ cleanup:
if (changed) { (simplify update pointers 62a) }
return changed,

}

Defines:

61
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simplifyEquality, used in chunks 63c, 90, and 111.
Uses 1c 30e and rc 30e.

Comment 3.1.3. The pointer ret points to the current term under consideration. If changed
is true by the end of the operation, then an equality embedded in the current term would have
been simplified. Otherwise, it stays the same as before the function is called. Assuming the term
has been changed, we have two cases to consider. If the current term is the root term (parent ==
NULL), then we overwrite the current term with ret. Otherwise, we simply redirect the pointer
parent->fields[id] to ret. Note that this code chunk is used in the other simplification routines
as well.

(simplify update pointers 62a)=
assert(ret);
if (parent = NULL) {
this—replace(ret); ret— freememory();
} else { parent— fields[id|— freememory(); parent— fields|id] = ret; }
Uses replace 42b.

(simplifyEquality::identical variables and function symbols 62b)=
if ((t1—=isVar() A t2—isVar()) V (t1—=isF() A t2—isF()))
if (t1—cname = t2—cname) {
changed = true; ret = new_term(D, iTrue);
goto simplifyEquality  cleanup;
}

Uses iTrue 145, isF 30a, isVar 30a, and new_term 40a.

Comment 3.1.4. This simplification does not apply when one of the terms is a variable. We also
do not handle equality of abstractions. That is done using statements in the booleans module.

(simplifyEquality::irrelevant cases 62c)=
if (t1—isVar() V t2—isVar()) return false;
if (t1—1isAbs()) return false;

Uses isAbs 30a and isVar 30a.

Comment 3.1.5. We have a special case for strings. Strings are represented internally as lists of
characters. Using the default rule to check the equality of two lists involves making many smaller
steps. The procedure here reduces comparison of strings to a single-step operation. Surprisingly,
this is actually not a great deal faster than the default multi-step procedure.

(simplifyEquality::case of strings 62d)=
if (t1—1isAString() A t2—isAString()) {

changed = true;

term * pl = t1, *x p2 = t2,

while (true) {
if (p1—isD(iEmptyList) A p2—isD(iEmptyList)) break;
if (pI—tag # p2—tag vV

pl—=lc()—re()— cname#£p2—lc()—re()— cname)
{ ret=new_term(D,iFalse); goto simplifyEquality cleanup;}

p1 = pi—re();
p2 = p2—rc();

}

ret = new_term(D, iTrue);

goto simplifyFEquality  cleanup

}

Uses iEmptyList 145, iFalse 145, iTrue 145, isAString 33a, isD 30a, 1c 30e, new_term 40a, and rc 30e.
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Comment 3.1.6. We need to check that both t1 and t2 are products before proceeding because
one of them can be a (nullary) function symbol that stands for another product. However, once
we have done that, we only have to check the dimension of t1 because the type checker would
have made sure that t2 has the same dimension. Given (z1,...,2,) = (Y1,...,Yn), We create a
term of the form ((--- (1 Ay1) A (@2 Aya)) -+ ) A (T AYn)).

(simplifyEquality::case of products 63a)=
if (t1—isProd() A t2—isProd()) {
changed = true; unint t1_args = t1— fieldsize;

(simplifyEquality::case of products::empty tuples 63b)
(simplifyEquality::case of products::error handling 63c)

term x eql = newT2Args(F, iEqual);
eql—init T2Args(t1— fields|0]—reuse(), t2— fields|0]—reuse());
term x eq2 = newT2Args(F, iEqual);
eq2—init T2Args(t1— fields|1]—reuse(), t2— fields[1]—reuse());

ret = newT2Args(F, iAnd); ret—init T2Args(eql, eq2);
for (unint i=0; i#t1 args-2; i++) {

term x eqi = newT2Args(F, iEqual);

eqi— init T2Args(t1— fields|i+2]|— reuse(),

t2— fields|i+2]|— reuse());

term * temp = newT2Args(F, iAnd);

temp—init T2Args(ret, eqi);

ret = temp;
}

goto simplifyEquality _ cleanup

}

Uses iAnd 145, iEqual 145, initT2Args 34a, isProd 30a, newT2Args 33c, and reuse 43d.

Comment 3.1.7. The boolean module as it stands in [L1o03] does not handle the expression
() = (). We will cater for that case here, which should of course evaluate to T.

(simplifyEquality::case of products::empty tuples 63b)=
if (t1_args = 0) { ret = new_term(D, iTrue); goto simplifyEquality cleanup; }

Uses iTrue 145 and new_term 40a.

Comment 3.1.8. Besides the empty tuple, we handle all finite-length tuples of dimension at least
two. It does not make a great deal of sense to have a tuple of dimension one.

(simplifyEquality::case of products::error handling 63c)=
if (t1_args # t2—fieldsize V t1_args < 2) {
setSelector(STDERR); ioprint("Error in simplifyEquality:products\n");
t1—print(); ioprintin(); t2—print(); ioprintin();

assert(tl _args = t2— fieldsize A\ t1_args > 2);
Uses ioprint 164 165, ioprintln 164 165, setSelector 164 165, and simplifyEquality 61.

(simplifyEquality::local variables 63d)=
int t1_arity = 0, t2_arity = 0;
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(simplifyEquality::case of applications 64a)=
(simplifyEquality::check whether we have data constructors 64b)
changed = true;

if (t1_arity =0 A t2_arity = 0) {
if (t1—spineTip()—isfloat A t2—spineTip()—isfloat) {
if (t1—spineTip()—numf = t2—spineTip()— numy)
ret = new_term(D, iTrue);
else ret = new_term(D, iFalse);
goto simplifyEquality _ cleanup;
} else if (t1—spineTip()—isint A t2— spineTip()—isint) {
if (t1—spineTip()—numi = t2— spine Tip()—numy)
ret = new_term(D, iTrue);
else ret = new_term(D, iFalse);
goto simplifyEquality  cleanup;

if (t1—spineTip()— cname = t2— spineTip()— cname)
ret= new_ term(D,iTrue);

else ret = new_term(D, iFalse);

goto simplifyEquality  cleanup

if (¢1_arity # t2_arity V t1—spineTip()— cname # t2— spineTip()— cname)
{ ret = new_term(D, iFalse); goto simplifyEquality cleanup; }

ret = newT2Args(F, iEqual);
ret—init T2Args(t1— fields[1]—reuse(), t2— fields|1]—reuse());
t1_arity—;
while (¢1_arity # 0) {
t1 = t1—fields[0]; t2 = t2— fields|0];
term x temp = newT2Args(F, iEqual);
temp—init T2Args(t1— fields[1|—reuse(), t2— fields[1]—reuse());
term x temp2 = newT2Args(F, iAnd); temp2— init T2Args(temp, ret);
ret = temp2,
t1_ arity—;
¥

Uses iAnd 145, iEqual 145, iFalse 145, iTrue 145, initT2Args 34a, newT2Args 33c, new_term 40a, reuse 43d,
and spineTip 32e.

Comment 3.1.9. We need to check whether the leftmost symbol of both t1 and t2 is a data
constructor. If we go pass this point, t1 and t2 have the right form for comparison.

(simplifyEquality::check whether we have data constructors 64b)=
if (—t1—spineTip(t1_arity)—isD()) return false;
if (12— spineTip(t2_ arity)—isD()) return false;

Uses isD 30a and spineTip 32e.
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Comment 3.1.10. This function implements the different arithmetic operations. We currently
support the following functions on numbers. More can be added if necessary.

65 (term::function definitions 32e)4=
bool term::simplifyArithmetic(term x parent, unint id) {

}

Defines:

if (=(re()—=isD() A le()—re()—isD())) return false;

int op = fields[0]—lc()—cname;
if (=(op > iAdd A op < iAtan2)) return false;

term x t1 = lc()—re(), * t2 = re();
if (t1—isD(ilnfinity) V t2—isD(ilnfinity)) return false;

term x ret = NULL;
(simplify Arithmetic::add, subtract, multiply and divide 66)
else if (op = iMaz) {
if (t1—isfloat A t2—isfloat) {
if (t1—=numf > t2—numf) ret =new_term_ float(t1—numf);
else ret = new_term_ float(t2—numy) ;
} else if (t1—isint A t2—isint) {
if (t1—numi > t2—numi) ret = new_term_ int(t1—numi);
else ret = new_term_ int(t2—numi) ;
} else return false;
} else if (op = iMin) {
if (t1—isfloat A t2—isfloat) {
if (t1—=numf < t2—numf) ret =new_term_ float(t1—numf);
else ret = new_term_ float(t2—numy) ;
} else if (t1—isint A t2—isint) {
if (t1—=numi < t2—numi) ret = new_term_ int(t1—numi);
else ret = new_term_ int(t2—numi) ;
} else return false;
} else if (op = iMod) {
assert(t1—isint A t2-isint);
ret = new_term_int(int(t1—numi % t2—numi));
} else if (op = idtan2) {
assert(t1—isfloat N\ t2—isfloat);
ret = new_term_ float(atan2(t1—numf, t2—numf));
}
(simplify update pointers 62a)
return true;

simplifyArithmetic, used in chunks 90 and 111.
Uses iAdd 145, iAtan2 145, iInfinity 145, iMax 145, iMin 145, iMod 145, isD 30a, 1c 30e, new_term_float 40a,
new_term_int 40a, and rc 30e.
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Comment 3.1.11. We overload the basic addition, subtraction, multiplication and division op-
erations to act on numbers, be they integers or floating-point numbers. The definitions are fairly
standard, when one of the arguments is a floating-point number, the result is a floating-point
number. When both arguments are integers, the result is an integer, except when we are dividing

two integers, in which case the result can be a floating-point number.

66 (simplify Arithmetic::add, subtract, multiply and divide 66)=
if (op = iAdd) {
if (t1—isfloat N t2—isfloat)
ret = new_term_ float(tI—numf + t2—numf);
else if (t1—isfloat N t2—isint)
ret = new_ term_ float(t1—numf + t2—numi);
else if (t1—isint A t2—isfloat)
ret = new_ term_ float(t1—numi + t2—numyf);
else if (t1—isint A t2—isint)
ret = new_ term_int(t1—numi + t2—numi);
else return false;
} else if (op = iSubd) {
if (t1—isfloat N t2—isfloat)
ret = new_ term_ float(t1—numf - t2—numf);
else if (t1—isfloat A\ t2—isint)
ret = new_term_ float(t1—numf - t2—numi);
else if (t1—isint A t2—isfloat)
ret = new_ term_ float(t1—numi - t2—numf);
else if (t1—isint A t2—isint)
ret = new_term_ int(tI—numi - t2—numi);
else return false;
} else if (op = iMul) {
if (t1—1sfloat N t2—isfloat)
ret = new_ term_ float(t1—numf * t2—numf);
else if (t1—isfloat A\ t2—isint)
ret = new_term_ float(tI—numf * t2—numi);
else if (t1—isint A t2—isfloat)
ret = new_term_ float(t1—numi * t2—numf);
else if (t1—isint A t2—isint)
ret = new_term_ int(tI—numi * t2—numi);
else return false;
} else if (op = iDiv) {
if (t1—isfloat N t2—isfloat)
ret = new_ term_ float(t1—numf + t2—numf);
else if (t1—isfloat N t2—isint)
ret = new_term_ float(tI—numf + t2—numi);
else if (t1—isint A t2—isfloat)
ret = new_term_ float(t1—numi + t2—numf);
else if (t1—isint A t2—isint) {
double res = (double)ti—numi + (double)t2—numd;
if (res = floor(res)) ret = new_term_ int(t1—numi + t2—numi);
else ret = new_term_ float(res);
} else return false;

}

Uses iAdd 145, iDiv 145, iMul 145, iSub 145, new_term_float 40a, and new_term_int 40a.

Comment 3.1.12. This function implements the different inequalities. It has the same

structure as simplifyArithmetic.

overall
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(term::function definitions 32e)+=
bool term::simplifyInequalities(term * parent, unint id) {
if (=(rc()—=isD() A le()—re()—isD())) return false;
int rel = le()—lc()—cname;

if (=(rel > iLT A rel <iGTE)) return false;

term x t1 = le()—re() ;
term x t2 = rc() ;

if (t1—isD(ilnfinity) V t2—isD(ilnfinity)) return false;

term x ret = NULL;
if (rel = iLT) {
if (t1—isint N t2—isint) {
if (t1—numi < t2—numi) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isfloat A t2—isfloat) {
if (t1—=numf < t2—numf) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isint A t2—isfloat) {
if (t1—=numi < t2—numf) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isfloat A t2—isint) {
if (t1—=numf < t2—numi) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else return false;
} else if (rel = iLTE) {
if (t1—isint N t2—isint) {
if (t1—=numi < t2—numi) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isfloat A t2—isfloat) {
if (t1—numf < t2—numf) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isint A t2—isfloat) {
if (t1—=numi < t2—numf) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isfloat A t2—isint) {
if (t1—=numf < t2—numi) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else return false;
} else if (rel = iGT) {
if (t1—isint A t2—isint) {
if (t1—numi > t2—numi) ret = new_ term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isfloat A t2—isfloat) {
if (t1—=numf > t2—numf) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isint A t2—isfloat) {
if (t1—=numi > t2—numf) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isfloat A t2—isint) {
if (t1—=numf > t2—numi) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
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} else return false;
} else if (rel = iGTE) {
if (t1—isint A t2—isint) {
if (t1—=numi > t2—numi) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isfloat A t2—isfloat) {
if (t1—=numf > t2—numf) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isint A t2—isfloat) {
if (t1—=numi > t2—numf) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else if (t1—isfloat A t2—isint) {
if (t1—=numf > t2—numi) ret = new_term(D,iTrue);
else ret = new_term(D,iFalse);
} else return false;
}
(simplify update pointers 62a)
return true;
}
Defines:
simplifyInequalities, used in chunks 90 and 111.

Uses iFalse 145, iGT 145, iGTE 145, iInfinity 145, iLT 145, iLTE 145, iTrue 145, isD 30a, 1lc 30e, new_term 40a,
and rc 30e.

Comment 3.1.13. We use the C math library to support common math operations like sin, cos,
ete.

68 (term::function definitions 32¢)+=
bool term::simplifyMath(term * parent, unint id) {
if (=(le()—=isF() A re()—isD())) return false;
int op = le()—cname;
if (—(op > iSin A op < iExp)) return false;

term x ret = NULL;
if (op = iSin) {

assert(re()—isfloat);

ret = new_ term_ float(sin(rc()—numy));
} else if (op = iCos) {

assert(rc()—isfloat);

ret = new_term_ float(cos(re()—numyf));
} else if (op = iSqrt) {

assert(re()—isfloat);

ret = new_term_ float(sqrt(re()—numyf));
} else if (op = iFzp) {

assert(rc()—isfloat);

ret = new_term_ float(exp(rc()—numf));
}
(simplify update pointers 62a)
return true;

}

Defines:
simplifyMath, used in chunks 90 and 111.
Uses iCos 145, iExp 145, iSin 145, iSqrt 145, isD 30a, isF 30a, 1c 30e, new_term_float 40a, and rc 30e.
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Comment 3.1.14. The S-reduction rule (Az.ut) = u{z/t} in the booleans module is not really
a valid program statement. (The leftmost symbol on the LHS of the equation is not a function
symbol.) It should therefore be thought of as a part of the internal simplification routine of Escher.
This rule is also the first among a few we will encounter where sharing of nodes in the current
term is not safe because of the appearance of term substitutions on the RHS of the equation. (See
Comments 3.1.16, 3.1.32 and 3.1.43 for the other such rules. The existence and (heavy) use of such
rules in Escher is one important reason I gave up on sharing of nodes. See Comment 2.2.33 for a
more detailed discussion on the advantages and disadvantages of sharing.) In a typical program
statement h = b without term substitutions in the body, rewriting a subterm that is a-equivalent
(see §3.1.3 for the exact details) to h in the current term with b involves only the creation and
destruction of terms and redirection of pointers to terms. No actual modification to an atomic
term embedded inside the current term actually takes place, which means sharing is always safe.
This scenario is no longer true when term substitutions appear in the body of statements.

(term::function definitions 32¢)4=
bool term::betaReduction(term * parent, unint id) {
if (le()—isAbs() = false) return false;

substitution bind(lc()— fields[0]— cname, rc());
le()— fields[1]— subst(bind);

term x ret = lc()— fields[1l]—reuse();

(simplify update pointers 62a)

return true;

}

Defines:
betaReduction, used in chunks 90 and 111.
Uses isAbs 30a, 1c 30e, rc 30e, reuse 43d, subst 52a, and substitution 51.

Comment 3.1.15. This implements the rule

if (x =s) then w else z = if (z = s) then w{z/s} else z

- - where z is a variable with a free occurrence in w.

This rule is relatively new and is first needed in Bayesian tracking applications.

(term::function definitions 32¢)4=
bool term::simplifylte(term * parent, unint id) {
if (—lc()—isF(ilte)) return false;
term * cond = rc()— fields|0];
if (—cond—isFunc2Args(iEqual)) return false;
if (=cond—lc()—re()—isVar()) return false;
int vname = cond—lc()—rc()— cname;
if (—re()—fields|1]— occursFree(vname)) return false;
substitution bind(vname, cond—rc());
re()— fields[1]— subst(bind);
return true;
}
Defines:
simplifyIte, used in chunk 111.

Uses iEqual 145, iIte 145, isF 30a, isFunc2Args 32f, isVar 30a, 1c 30e, occursFree 47b, rc 30e, subst 52a,
and substitution 51.

Comment 3.1.16. This function implements the following conjunction rule:

uA(x=t)Av=u{x/t} A(x=t) Av{x/t}. (3.1)
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Here, t is not a variable and x is a variable free in u or v or both, but not free in t. The LHS of the
equation is supposed to capture every term that has a subterm (x = t) embedded conjunctively
(see Definition 3.1.18) inside it. All the variables in the rule are syntactical variables because a
subterm that pattern matches with the LHS of the equation can occur inside a term that binds
the variable x, in which case the standard term substitution routine will not give us what we want.

The condition that t is not a variable is important. If t is a free variable and we interpret (x = t)
to stand for (x = t) or (t = x), I think the correct interpretation, then loops can result from
repeated application of the rule. In [L1099], the statement

(t =z) = (x =t) where x is a variable, and ¢ is not a variable

is used to capture the symmetry between x and t in the rule. In the current implementation, we
do away with the swapping rule and implement the symmetry directly to gain better efficiency.
The condition that t is not a variable does not appear in [Llo03]; this suggests that the rule as it
appears in the book is either loopy or incomplete, depending on how one interprets the rule.

There is another small problem with the rule. Note that I have been calling it a rule, not a
statement. Why? In any instantiation of the rule, the variable x must occur free in at least
two places, which means the instantiation cannot be a statement because of the no repeated free
variables condition. This error appears in every description of Escher before 22 Sep 2005, the day
it was discovered. The use of this rule, among other things, affects the run-time type checking is
unnecessary result (See Proposition 5.1.3 in [L1o03]). This is not as bad as it sounds; we only have
to type-check every time we use the conjunction rule, not after every computation step.

Problem 3.1.17. What is the cost, in terms of expressiveness, of omitting this rule?

Definition 3.1.18. A term ¢ is embedded conjunctively in ¢ and, if ¢ is embedded conjunctively
in 7 (or s), then ¢ is embedded conjunctively in r A s.

Comment 3.1.19. We could implement the rule completely using the following set of statements.

(x=t) Au) = ((x=t) Au{x/t})
(uA(x=t))=((x=t)Au)

where u does not have the form (y = s) for some terms y and s.
(x=t)Au)Av)=(x=t)A(uAV))
(uA((x=t)AV))=(x=t)A(uAV))

where u does not have the form (y = s) for some terms y and s.

A

—~

The last three statements can bring out conjunctively embedded equations to the front of the term,
which can then be simplified using the first statement. A loop can occur if the side conditions in
the second and fourth statements are not imposed.

Comment 3.1.20. Notice that we do not need the parent pointer for this particular rewriting.

Comment 3.1.21. In the following, we first check that the current term has the right form, then
we find (using findEq (see Comment 3.1.22)) a variable-instantiating equation inside the current
term. By a variable-instantiating equation I mean a (sub)term having the form (xz = t) embedded
conjunctively inside the current term which satisfies all the side conditions of Equation 3.1. (If
there are more than one variable-instantiating equation, the leftmost is selected. Subsequent calls
to £indEq on the current term (rewritten using Equation 3.1) will find the remaining variable-
instantiating equations in the left-to-right order.) If no such equation exists, findEq returns a
null pointer. We rename the x in (x = t) temporarily so that it does not get substituted with
t by subst. Since we will not call freememory on the current term, we need to reuse the term
p->fields[1] when creating bind to make sure the term substitution works as expected.
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(term::function definitions 32e)+=
bool term::simplifyConjunction() {

}

Defines:

term x p = findEq(this); if (p = NULL) return false;

term x varp = p—le()—re();
varp— freeze = true;

substitution bind(varp— cname, p— fields|l]—reuse());
subst(bind); p— fields[1]— refcount—;

varp— freeze = false;

return true;

simplifyConjunction, used in chunks 90 and 111.
Uses findEq 71b, freeze 31f, 1c 30e, rc 30e, reuse 43d, subst 52a, and substitution 51.

Comment 3.1.22. The function findEq seeks a variable-instantiating equation inside the root
term with the help of isEq. The function findEq assumes that the calling term is a conjunction
of the form #; A ts. (See Definition 3.1.18.) If ¢; is a variable-instantiating equation, we return.
Otherwise, we recurse on t; if it has the right (conjunctive) form. Then we do the same on ¢s.
This gives us the left-to-right selection order.

(term::function definitions 32e)+=
term x term::findEq(term x root) {

}

Defines:

term x p = NULL;

term x t1 = le()—re();

if (t1—isEq(root)) return t1;

if (t1—isFunc2Args(iAnd)) { p = t1—findEq(root); if (p) return p; }

term x t2 = rc();

if (t2—isEq(root)) return t2

if (t2—isFunc2Args(iAnd)) { p = t2— findEq(root); if (p) return p; }
return NULL;

findEq, used in chunks 7la and 111.
Uses iAnd 145, isEq 72a 77b, isFunc2Args 32f, 1c 30e, and rc 30e.
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Problem 3.1.23. Getting findEq to run fast is an interesting search problem. The first question
is whether left-to-right is the right search order? We can implement top-to-bottom search by
isEqing t; and t5 first, followed by recursion into each of them. Would that be better? Another
question is can we improve search time by representing conjunctive terms differently, for example
in a flat representation? Or if we do stick with the tree representation, can we augment nodes (in
the spirit of binary search algorithms) to make the search go faster?

Comment 3.1.24. This function checks whether the current term is a variable-instantiating term,
that is, whether it has the form (¢; = t5), where t; is a variable, t5 is a (non-variable) term such
that ¢; does not occur free in it, and ¢; occurs free elsewhere in the term root. Note the symmetry
between t; and to. We must check both because any one of them can turn out to be the variable
that satisfies all the conditions.

(term::function definitions 32e)+=
bool term::isEq(term * root) {
if (isFunc2Args(iEqual) = false) return false;
term x t1 = le()—re(), * t2 = rc();
if (t1—isVar() A t2—isVar() = false) {
if (t2—occursFree(t1— cname) = false) {
t1—freeze = true;
if (root— occursFreeNaive(t1— cname)) {
t1— freeze = false; return true; }
t1—freeze = false;
1
if (t2—isVar() A t1—isVar() = false) {
if (t1—occursFree(t2— cname) = false) {
t2— freeze = true;
bool ret = root— occursFreeNaive(t2— cname);
t2— freeze = false;
if (ret) { (isEq::switch t1 and t2 72b) }
return ret;

1

return false;

}

Defines:
isEq, used in chunks 71b, 76-78, and 111.

Uses freeze 31f, iEqual 145, isFunc2Args 32f, isVar 30a, 1lc 30e, occursFree 47b, occursFreeNaive 47c,
and rc 30e.

Comment 3.1.25. We use occursFreeNaive for root here because the temporary variable re-
naming we do affects the correctness of the caching of computed free variables. (Note: We no
longer do variable renaming, do we still really need to use occursFreeNaive?

Comment 3.1.26. We need to swap t; and to because procedures that call findEq expect the
variable that satisfies all the conditions to be on the LHS of the equation.

(isEq::switch t1 and t2 72b)=
term x temp = t1; le()—fields[1] = t2; fields[1] = temp;
Uses 1c 30e.

Comment 3.1.27. Example execution of simplifyConjunction.

Query: ((&& y) ((&& ((== x) T1)) ((&& ((== T2) y)) x)))
Time = 1 Answer: ((&& y) ((&& ((== x) T1)) ((&& ((==T2) y)) T1)))
Time = 2 Answer: ((&& T2) ((&& ((== x) t1)) ((&& ((== y) T2)) T1)))
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There are two variable-instantiating equations in the query. It is easy to get this wrong if one is
not careful.

Comment 3.1.28. We next look at the implementation of the rules

uA(Fry. - 3Jx,.v) =Fzg. - Jzp (WA V) (3.2)
(Fzq.---Fzp.v) Au=Tzy. - Fzpy.(V A0)

Note that the convention on syntactic variables dictate that none of the variables x; can appear
free in u. The two rules can be captured by repeated applications of the following two special
cases of the rules

uA (Jz.v) =3z.(uAv) (3.4)
(Fzv)Au=3Tz.(vAu) (3.5)

and these are what we will actually implement. We choose to implement these easier rules because
checking that each z; is free in u would be an expensive exercise.

Interestingly, it is actually quite important to get the order of u and v right in the conjunction.
For example, implementing

(Fzv)Au=3Tz.(uAvV)
instead of Statement 3.5 will seriously slow down the predicate permute (see Sect. 6.3).

73 (term::function definitions 32¢)4=
bool term::simplifyConjunction2(term  parent, unint id) {

term x t1 = le()—re(), * t2 = re();

term * sigma, * other;

if (t2—isApp() A t2—lc()—isF(iSigma)) {
sigma = t2; other = t1,

} else if (t1—isApp() N t1—lc()—isF(iSigma)) {
sigma = t1; other = t2;

} else return false;

int var = sigma—rc()— fields|0]— cname;
if (other— occursFree(var)) return false;

(simplifyConjunction2::create body 74)
(simplify update pointers 62a)
return true;
}
Defines:

simplifyConjunction2, used in chunks 90 and 111.
Uses iSigma 145, isApp 30a, isF 30a, 1c 30e, occursFree 47b, and rc 30e.
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Comment 3.1.29. We could recycle 3x but choose not to.

(simplifyConjunction2::create body 74)=
term x con = newT2Args(F, iAnd);
if (sigma = t2)
con—init T2Args(other—reuse(), sigma— re()— fields[1]—reuse());
else con—init T2Args(sigma— rc()— fields[1]—reuse(), other—reuse());
term * abs = new_ term(ABS);
// abs->lc = new_term(V, var); abs->rc = con;
abs—insert(new_term(V, var)); abs—insert(con);
term x ret = new_ term(APP);
// ret->lc = new_term(F, iSigma); ret->rc = abs;
ret—insert(new_ term(F, iSigma)); ret—insert(abs);

Uses iAnd 145, iSigma 145, initT2Args 34a, insert 30e, 1lc 30e, newT2Args 33c, new_term 40a, rc 30e,
and reuse 43d.

Comment 3.1.30. Example execution of simplifyConjunction?2.

Query: ((&& (sigma \x1.(sigma \x2.v))) u)
Time = 1 Answer: (sigma \x1.((&& u) (sigma \x2.v)))
Time = 2 Answer: (sigma \x1.(sigma \x2.((&& u) v)))

Comment 3.1.31. The use of Statements 3.4 and 3.5 introduces a peculiar behaviour into Escher
in that the same query, when asked using two different variable names, can result in two different
computation sequences. To illustrate this, consider the following statement:

fioIntx (Int — 2) = 2
f(z,s) = (x < 8) AJz.(2 € s A (prime 2)).

Now, if we ask Escher to compute the value of f(y, {2,3}), we get

f(©,{2,3}) = (y < 8) A3z.(z € {2,3} A (prime z))
Fz.((y < 8) ANz e {2,3} A (prime z))

=3z.((y <8 A (z=2))
= (y <8).
However, if we ask Escher to compute the value of f(z,{2,3}), we will get

f(2,{2,3}) = (2 < 8) A 3z.(z € {2,3} A (prime z2))

= (

z§8)/\§|z( =2)
=(z<8)A
= (2 <8).

The two computation sequences are different from the second step onwards. The second sequence
takes one step longer than the first. Just about the only comforting thing is that the end results
are equivalent. The questions then are

1. Should we retain Statements 3.4 and 3.5 in the booleans module? Judging from the (limitted
set of) test programs I have, there is no actual need for the two statements. In general, I
believe they make certain computations go faster, although one can also show instances
where they actually make things go slightly slower.
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2. If we retain the two statements, should we modify the convention so that a variable renaming
is done to make them applicable in cases where they cannot be applied?

Comment 3.1.32. This function implements the following existential rules:

Jxq.o--Fx, . T=T (3.6)
Jzy.---Fzp. L= 1 (3.7)
Azy.- Tz (XA (z1 =) Ay) = Fxg. - - Tz (x{z1/u} AT Ay{ai/ul). (3.8)

The other rules are implemented in the Booleans module. See Comment 6.1.1. I suppose they can
be implemented here if we really need to maximise efficiency at the price of complicated code.

Comment 3.1.33. We first check whether the current term starts with Jxq ---3Jx,. We then
move to the subterm after Jx; - - - Jx, and perform surgery on it if possible.

(term::function definitions 32¢)+=
bool term::simplifyExistential(term * parent, unint id) {
if (fields[0]—isF(iSigma) = false) return false;

term x ret = NULL; term x p = NULL;
int var = rc()— fields[0]— cname;
substitution bind,

(simplifyExistential::move to the body 75b)

(simplifyExistential::case one and two 75c)
(simplifyExistential::tricky case 76a)

simplifyFxistential_ cleanup:
(simplify update pointers 62a)
return true;
}
Defines:

simplifyExistential, used in chunks 90 and 111.
Uses iSigma 145, isF 30a, rc 30e, and substitution 51.

Comment 3.1.34. The following allows us to move past the remaining Jz; to get to the body of
the term.

(simplifyExistential::move to the body 75b)=
term x body = fields[1]— fields[1];
while (body—isApp() A body—lc()—isF(iSigma)) {
body = body— rc()— fields[1];
}

Uses iSigma 145, isApp 30a, isF 30a, 1c 30e, and rc 30e.

Comment 3.1.35. This handles Statements 3.6 and 3.7. Completeness of specification is not an
issue here. The two statements can be captured by repeated application of the statements

dz. T =T and dz.L = 1.

Making them part of the internal simplification routine gives us efficiency advantages.

(simplifyExistential::case one and two 75¢)=
if (body—isD(iTrue) V body—isD(iFalse)) {
ret = body—reuse(); goto simplifyExistential_ cleanup; }
Uses iFalse 145, iTrue 145, isD 30a, and reuse 43d.
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Comment 3.1.36. We next discuss Statement 3.8. The pattern in the head of Statement 3.8
should be interpreted in the same way as the corresponding pattern in the conjunction rule de-
scribed in Comment 3.1.16. Note that the statement is slightly different from that given in [L1o03],
which takes the following form:

Jry.--Fep. (XA (z; =) Ay) =32y - Frim1.3wipq. - g (x{x /u} Ay{z;/u}).

First, restricting x; to be x; as we did incurs a small computational cost in that we need to move
to the subterm starting with Jx; during pattern matching to apply Statement 3.8. In return, we
can write simpler code. The second change is that instead of dropping the term (z; = u), we put
a T in its place. The two expressions are equivalent, of course. The advantage of that is the same:
we can write simpler code. Another advantage of this latter change is that, unlike the original
statement, we do end up with a natural special case. (See Comment 3.1.37.)

(simplifyExistential::tricky case 76a)=
(simplifyExistential::tricky case::special case 76b)
(simplifyExistential::tricky case::general case 76c)

Comment 3.1.37. A special case of Statement 3.8 is the following:
9.z (1 =u) = Jxg. -+ - Fzp, . T (3.9)
The body of the statement can be further simplified to T, of course.

(simplifyExistential::tricky case::special case 76b)=
if (body—isEq(var)) { ret = new_term(D, iTrue);
goto simplifyExistential_ cleanup; }
Uses iTrue 145, isEq 72a 77b, and new_term 40a.

Comment 3.1.38. In the general case, we first check that the body has the overal form ¢; A 5.
Then we attempt to find in the body an equation that instantiates the first quantified variable and
replaces it with T. (This is performed all at the same time by replaceEq.) If that operation is
successful, we perform term substitutions on the body and then get rid of the first quantification.

(simplifyExistential::tricky case::general case 76¢)=
if (body—isFunc2Args(iAnd) = false) return false;
p = body—replaceEq(var); if (p = NULL) return false;

bind.first = p—lc()—re()— cname; bind.second = p— fields[1];
body— subst(bind);
p— freememory();

ret = re()— fields[1]— reuse();
Uses iAnd 145, isFunc2Args 32f, 1c 30e, rc 30e, replaceEq 77a, reuse 43d, and subst 52a.
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Comment 3.1.39. The function replaceEq finds a subterm of the form (z = ¢) embedded
conjunctively inside a term (with the help of isEq), replaces it with T and then returns a pointer
to (z =1).

Comment 3.1.40. We assume that the calling term is a conjunction of the form t; A ty. If ¢
is a variable-instantiating equation, we return. Otherwise, we recurse on t; if it has the right
(conjunctive) form. Then we do the same on t2. (See also Comment 3.1.22.)

7Ta (term::function definitions 32e)+=
term x term::replaceEq(int var) {
term x p = NULL;
term x t1 = le()—re();
if (t1—isEq(var)) {
le()—fields[1] = new_term(D, iTrue); return tI; }
if (t1—isFunc2Args(iAnd)) { p = t1—replaceEq(var); if (p) return p; }

term x t2 = rc();

if (t2—isEq(var)) { fields[l] = new_term(D, iTrue); return ¢2; }

if (t2—isFunc2Args(iAnd)) { p = t2—replaceEq(var); if (p) return p; }
return NULL;

}

Defines:
replaceEq, used in chunks 76¢c, 79b, and 111.
Uses iAnd 145, iTrue 145, isEq 72a 77b, isFunc2Args 32f, 1c 30e, new_term 40a, and rc 30e.

Comment 3.1.41. This function checks whether the current term has the form (z = t) where x
is the input variable and t is a term such that  does not occur free in t. If the current term has
the form (¢t = =) where & does not occur free in ¢, we need to swap the two arguments because
procedures that call replaceEq expect the variable x to be on the LHS of the equation.

77b (term::function definitions 32e)+=
bool term::isEq(int x) {
if (isFunc2Args(iEqual) = false) return false;
term x t1 = le()—re(), * t2 = re();

if (t1—isVar(x) A t2—occursFree(x) = false) return true;
if (t2—isVar(z) A t1—occursFree(z) = false) {
(isEq::switch t1 and t2 72b)
return true; }
return false;

}

Defines:
isEq, used in chunks 71b, 76-78, and 111.
Uses iEqual 145, isFunc2Args 32f, isVar 30a, 1c 30e, occursFree 47b, and rc 30e.

Comment 3.1.42. Example execution of simplifyExistential.

Query: (sigma \x3.(sigma \x2.(sigma \x1.((== x3) t1))))
Time = 1 Answer: True

Query: (sigma \x3.(sigma \x.(sigma \y.(&& y (&& (== x T1) (&& (== t2 y) x))))))
Time = 1 Answer: (sigma \x3.(sigma \y.(&& y (&& True (&& (== t2 y) T1)))))
Time = 2 Answer: (sigma \x3.(&& t2 (&& True (&& True T1))))

Time = 3 Answer: (sigma \x3.(&& t2 (&& True T1)))

Time = 4 Answer: (sigma \x3.(&& t2 T1))
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Comment 3.1.43. This function implements the following universal rules:

Vay. Ve (L —-u)=T (3.10)
Vay. o Van.(xA(xp =u) ANy = v) =Vaa. Ve, (x AT Ay = v){x;/u}). (3.11)

Statement 3.11 is equivalent to the following rule given in [L1o03]:
Vay. o Van.(xA(xp =u) ANy = v) =Vay. Vo, V1. - Ve (x Ay = v){a;/u}).

(term::function definitions 32e)+=
bool term::simplifyUniversal(term * parent, unint id) {
if (le()—isF(iPi) = false) return false;

int var = rc()— fields[0]— cname;
(simplifyUniversal::check the form of body 78b)
(simplify Universal::true statement 78c)
(simplifyUniversal::special case 78d)
(simplifyUniversal::general case 79b)
}
Defines:

simplifyUniversal, used in chunks 90 and 111.
Uses iPi 145, isF 30a, 1c 30e, and rc 30e.

Comment 3.1.44. We move past the remaining Vs to get to the body and check whether it has
the form t; — 5. If so, we move to t;.

(simplifyUniversal::check the form of body 78b)=
term * body = rc()— fields[1];
while (body—isApp() A body—lc()—isF(iP1))
body = body— rc()— fields[1];
if (body—isFunc2Args(ilmplies) = false) return false;
term * t1 = body—lc()—re();
Uses iImplies 145, iPi 145, isApp 30a, isF 30a, isFunc2Args 32f, 1c 30e, and rc 30e.

Comment 3.1.45. This code chunk implements Statement 3.10.

(simplify Universal::true statement 78c)=
if (t1—1isD(iFalse)) { term x ret = new_term(D, iTrue);
(simplify update pointers 62a)
return true; }
Uses iFalse 145, iTrue 145, isD 30a, and new_term 40a.

Comment 3.1.46. A special case of Statement 3.11 is the following:
Vey. Vo, (1 =u) = v) =Vag. - - Vo, (T — v){z1/u} =V, - - Va,.v{z; /u}.

(simplifyUniversal::special case 78d)=
if (t1—isEq(var)) {

term x t2 = body—rc();
substitution bind(t1—lc()—re()—cname, t1—rc());
t2— subst(bind);
body— replace(t2—reuse());
t2— freememory();
(simplifyUniversal::change end game 79a)

}

Uses isEq 72a 77b, 1c 30e, rc 30e, replace 42b, reuse 43d, subst 52a, and substitution 51.
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Comment 3.1.47. After changing the body, we remove the quantifier of z; and return.

(simplifyUniversal::change end game 79a)=
term x ret = rc()— fields[1]—reuse();
(simplify update pointers 62a)
return true;

Uses rc 30e and reuse 43d.

Comment 3.1.48. We first check whether the LHS of — has the form t3 A t4. If so, we seek to
find an equation instantiating the first quantified variable and replace it with T. (This is again
done using replaceEq.) Then we make the necessary term substitutions and return.

(simplifyUniversal::general case 79b)=
if (t1—isFunc2Args(iAnd) = false) return false;
term x p = t1—replaceEq(var); if (p = NULL) return false;
substitution bind(p—lc()—re()—cname, p— fields[1]);
body— subst(bind);
p— freememory();

)

(simplifyUniversal::change end game 79a)
Uses iAnd 145, isFunc2Args 32f, 1c 30e, rc 30e, replaceEq 77a, subst 52a, and substitution 51.
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Comment 3.1.49. Example execution of simplifyUniversal.

Query:
Time =

Query:
Time =

Time =
Time =
Time =
Time =
Time =

(pi \x2.(pi \x1.(pi \x3.((implies ((== x1) t1)) ((&& x1) x1)))))

1 Answer: (pi \x2.(pi \x3.((&& t1) t1)))

(pi \x3.(pi \x1.(pi \x2.((implies ((&& ((== True) x2))

((&& ((== x1) True)) ((&& x1) x2)))) t1))))
(pi \x3.(pi \x2.((implies ((&& ((== True) x2))

((&& True) ((&& True) x2)))) t1)))
2 Answer: (pi \x3.((implies ((&& True) ((&& True) (&% True True)))) t1))
3 Answer: (pi \x3.((implies ((&& True) ((&& True) True))) tl))
4 Answer: (pi \x3.((implies ((&& True) True)) t1))

1 Answer:

5 Answer: (pi \x3.((implies True) t1))
6 Answer: (pi \x3.t1)

Comment 3.1.50. This next function implements the rules

0;t =t if t is rigid.
(O;s t) =0;(s t) if tis rigid.

(term::function definitions 32e)+=
bool term::simplifyModalTerms(term x parent, unint id) {
if (isModal()) {

}

Defines:

if (—isRigid()) return false;
term x ret = fields[0]—reuse();
(simplify update pointers 62a)
return true;

}
if (isApp() A le()—isModal() A le()— fields[0]—isF()) {

}

if (—re()—isRigid()) return false;
term x ret = new_term(MODAL);
ret—modality = le()—modality;
term * temp = new_term(APP);
+x temp—lc = le—le—reuse();
temp—rc = rce—reuse();

ret—lc = temp; x—+
temp—insert(lc()— fields|0]—reuse());
temp—insert(rc()—reuse());
ret—insert(temp);

(simplify update pointers 62a)
return true;

return false;

simplifyModalTerms, used in chunk 111.

Uses insert 30e, isApp 30a, isF 30a, isModal 30a, lc 30e, new_term 40a, rc 30e, and reuse 43d.



8la

81b

8lc

81d

3.1. TERM REWRITING 81

3.1.2 Computing and Reducing Candidate Redexes

Comment 3.1.51. We now describe the function reduce that dynamically computes the candi-
date redexes inside a term (in the leftmost outermost order) and tries to reduce them.

Definition 3.1.52. A redex of a term ¢ is an occurrence of a subterm of ¢ that is a-equivalent to
an instance of the head of a statement.

Comment 3.1.53. Informally, given a term ¢, every term s represented by a subtree of the syntax
tree representing ¢, with the exception of the variable directly following a A, is a subterm of ¢. The
path expression leading from the root of the syntax tree representing ¢ to the root of the syntax
tree representing s is called the occurrence of s. For exact formal definitions of these concepts, see
[L1003, pp. 46].

Comment 3.1.54. There is an easy way to count the number of subterms in a term ¢. A token is
either a left bracket ’(’, a variable, a constant, or an expression of the form Az for some variable x.
The number of subterms in a term ¢ is simply the number of tokens in (the string representation)
of t. For example, the term ((f (1,(2,3),4)) Az.(g x)) has 13 subterms.

Comment 3.1.55. There are obviously many subterms. For redex testing, it is important that
we rule out as many of these as posible up front. The following result is a start.

Proposition 3.1.56. Let t be a term. A subterm r of t cannot be a redex if any one of the
following is true:

1. r is a variable;

2. r = Ax.t for some variable x and term t;

3. r=Dt...t,, n >0, where D is a data constructor of arity m > n, and each t; is a term;
4. r={(t1,...,ty) for somen > 0.

Proof. Consider any statement h = b in the program. By definition, h has the form f ¢1...¢,,
n > 0 for some function f. In each of the cases above, r # h6 for any 6 and therefore r cannot be
a redex. 0

(cannot possibly be a redex 81a)=

if (isAString()) return false;

if (tag = V V tag = D) return false;

if (tag = ABSV tag = PROD V tag = MODAL V isData()) goto not_a_ redex;
Uses isAString 33a and isData 81b 82d.

Comment 3.1.57. This function checks whether the current term has the form D t;...t,, n > 1,
where D is a data constructor of arity m > n and each ¢; is a term.

(term::function declarations 30a)+=
bool isData();

Defines:
isData, used in chunk 8la.

Comment 3.1.58. When we see a term t = D t1...t,, n > 1, where D is a data constructor of
arity n and each ¢; is a term, we can immediately deduce that any prefix of ¢ cannot be a redex.
The variable is_data is used to store this information.

(term bool parts 31a)+=
bool is_data;

(term init 29d)+=
is_ data = false;
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(heap term init 29e)+=
ret—is_ data = false;

(term clone parts 29f)+=
ret—is_ data = is_ data;

Comment 3.1.59. We can probably sometimes recycle t->is_data here, but decided to always
use the safe false value instead.

(term replace parts 29g)+=
is_ data = false;

Comment 3.1.60. If the current term is a data term, then the left subterm of the current term
is also a data term.

(term::function definitions 32¢)+=
bool term::isData() {
if (tag # APP) return false;
if (is_data) { fields|0]—is_ data = true; return true; }
if (spineTip()—isD()) {
is_data = true; fields|0]—is_ data = true; return true; }
return false;
}
Defines:

isData, used in chunk 81a.
Uses isD 30a and spineTip 32e.

Comment 3.1.61. Proposition 3.1.56 allows us to focus on terms of the form (f ¢;...¢,), n >0,
in finding redexes. What else do we know that can be used to rule out as potential redexes sub-
terms of this form?

Given a function symbol f, we define the effective arity of f to be the number of argument(s) f
is applied to in the head of any statement in the program. Clearly, given a term ¢ = (f t1...¢,),
n > 0, if n is not equal to the effective arity of f, then ¢ cannot possibly be a redex.

(cannot possibly be a redex 2 82¢)=
if (tag = F A getPuncEArity(cname).first # 0) return false;
if (isFuncNotRightArgs()) goto not_a_ redex;

Uses getFuncEArity 155b and isFuncNotRightArgs 82f 83e.

Comment 3.1.62. This function checks whether the current term, which is an application node, is
a function applied to the right number of arguments (its effective arity). The number of arguments
can be more than the effective arity of the leftmost function symbol. The term (((remove s) t) x)
is one such example.

(term::function declarations 30a)+=
bool isFuncNotRightArgs();

Defines:
isFuncNotRightArgs, used in chunk 82e.

Comment 3.1.63. This is used to capture the fact that every prefix of a function application
term that does not have enough arguments will not have enough arguments.

(term bool parts 31a)+=
bool notEnoughArgs;
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(term init 29d)+=
notEnoughArgs = false;

(heap term init 29e)+=
ret—notEnoughArgs = false;

(term clone parts 29f)+=
ret—notEnoughArgs = notEnoughArygs;

Comment 3.1.64. We can probably safely recycle t->notEnoughArgs here.

(term replace parts 29g)+=
notEnoughArgs = false;

Comment 3.1.65. If we have an excess of arguments, return true. Otherwise, if we have an
under supply of arguments, mark the notEnoughArgs flag of the left subterm and then return
true.

(term::function definitions 32¢)+=
bool term::isFuncNotRightArgs() {
if (tag # APP) return false;
if (notEnoughArgs) { fields[0]—notEnoughArgs = true; return true; }
spineTip(); // can use spineTip(int & x) here
int numargs = spinelength-1;
if (spinetip—isF() = false) return false;
pair<int,int> arity = getFuncEArity(spinetip— cname);
(isFuncNotRight Args::error handling 83f)
// if (arity > numargs) {
if (numargs < arity.first) {
notEnoughArgs = true; fields|0]—notEnoughArgs = true;
return true;
¥
// return (arity < numargs);
return (numargs > arity.second);
}
Defines:

isFuncNotRightArgs, used in chunk 82e.
Uses getFuncEArity 155b, isF 30a, and spineTip 32e.

Comment 3.1.66. If the function is unknown, then we just return true as a conservative measure.

(isFuncNotRight Args::error handling 83f)=
if (arity.first = -1) return true;

Comment 3.1.67. We now describe the reduce function. We compute the subterms one by one
in the left-to-right, outermost to innermost order. For each subterm, we first determine whether
it can possibly be a candidate redex. If not, we proceed to the next subterm. Otherwise, we
attempt to match and reduce it using try_match_n_reduce. If this is successful, we return true.
Otherwise, we proceed to the next subterm. The parameter tried records the total number of
candidate redexes actually tried by this function. All the other parameters are needed only by
try_match_n_reduce.
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(term::function declarations 30a)+=
bool reduce(vector<int> mpath, term * parent, unint cid,
term * root, int & tried);
bool reduce(vector<int> mpath, term x parent, unint cid,
term * root, int & tried, bool lresort);
bool reduceRpt(int mazstep, int & stepsTaken);
bool reduceRpt() { int z; return reduceRpt(0, z); }

Defines:
reduce, used in chunks 84-87, 89a, 91b, and 93b.
reduceRpt, never used.

(term::function definitions 32e)+=
bool term::reduce(vector<int> mpath, term * parent, unint cid,
term x root, int & tried) {
if (reduce(mpath,parent,cid,root,tried false)) return true;
// cerr << "Trying last resort rules" << endl;// setSelector(osel);
return reduce(mpath,parent,cid,root,tried,true);

}

Uses reduce 84a 85a and setSelector 164 165.
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85a (term::function definitions 32¢)+=
bool term::reduce(vector<int> mpath, term * parent, unint cid,
term * root, int & tried, bool Ir) {

(cannot possibly be a redex 81a)

##ifdef ESCHER
(cannot possibly be a redex 2 82e)

#endif
tried++;
// if (try _disruptive(mpath, this, parent, cid, root, tried))
// return true;
if (try_match_n_ reduce(mpath,this,parent,cid,root,tried,lr))

return true;

not_a_ redex:
if (tag = ABS)
return fields[1]—reduce(mpath,this,1, root, tried,ir);
if (tag = MODAL) {
// return false; // to begin with, Escher does not handle this.
mpath.push_ back(modality);
return fields|0]—reduce(mpath,this,0,root, tried, Ir);

if (tag = APP) {
(reduce::small APP optimization 85b)
if (le()—reduce(mpath, this,0, root, tried, Ir))
return true;
return rc()—reduce(mpath,this,1, root, tried, Ir);

}
if (tag = PROD) {
unint dimension = fieldsize;
for (unint i=0; i dimension; i++)
if (fields|i|—reduce(mpath, this, i, root, tried, Ir))
return true;
return false;
}
if (tag = F) return false;
#ifdef ESCHER

setSelector(STDERR); cerr < "term = "; print(); ioprintln();
cerr < "tag = " < tag < endl; assert(false);
#endif

return false;

}

Defines:
reduce, used in chunks 84-87, 89a, 91b, and 93b.
Uses ioprintln 164 165, 1c 30e, rc 30e, setSelector 164 165, and try_match_n_reduce 87.

Comment 3.1.68. When we see a term of the form (f t) where f has effective arity greater than
1, we can immediately deduce that f cannot be a redex. This would have been picked out if we
recurse on f, but we can save a call to getFuncEArity by having a special case here.

85b (reduce::small APP optimization 85b)=
#ifdef ESCHER
if (le()—isF() A notEnoughArgs)
return rc()—reduce(mpath, this, 1, root, tried, Ir);
#endif
Uses isF 30a, 1c 30e, rc 30e, and reduce 84a 85a.
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Comment 3.1.69. It is easy to add code to calculate the occurrence of each subterm if this
information is desired.

Comment 3.1.70. The function reduceRpt reduces an expression repeatedly until no further
reduction is possible. The return value is true if the term is modified in the process; false otherwise.

(term::function definitions 32e¢)+=
bool term::reduceRpt(int mazstep, int & stepsTaken) {
int tried = 0; vector<int> modalPath;
bool reduced = true; bool rewritten = false;
int starttime = ltime;
while (reduced) {
reduced = reduce(modalPath, NULL, 0, this, tried);
if (reduced) rewritten = true;
if (tag = D) break;
if ((mazxstep > 0) A (Itime - starttime) > maxstep) break;
if (interrupted) break;
b
stepsTaken = ltime - starttime;
return rewritten;
}
Defines:

reduceRpt, never used.
Uses reduce 84a 85a.

Comment 3.1.71. The function reduce uses the following function to try and match and reduce
a candidate redex. The function try_match_n_reduce works as follows. Given a candidate redex,
we first examine whether it can be simplified using the internal simplification routines of Escher.
If so, we are done and can return. Otherwise, we try to pattern match (using redex_match) the
candidate redex with the head of suitable statements in the program. If the head of a statement
h = b is found to match with candidate using some term substitution 6, then we construct b6
and replace candidate with b6. Depending on whether candidate has a parent, we either only
need to redirect a pointer or we need to replace in place.

(terms.cc::local functions 33¢)+=
#include "global.h"
#include "pattern-match.h"
static int nestingdepth = 0;
(try match 87)

(try disruptive 93b)
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87 (try match 87)=
bool do_local_search = true;
bool try match _n_ reduce(vector<int> mpath, term x candidate,
term x parent,unint cid, term x r00t,
int & tried, bool lastresort) {
vector<substitution> theta; +—x this cannot be made global because of
eager statements x—+
(debug matching 1 92d)
(try match::different simplifications 90)
(try match::try cached statements first 8ga)

candidate— spine Tip();
if (—candidate— spinetip—isF()) return false;
int anchor = candidate— spinetip— cname;
if (anchor > (int)grouped_ statements.size()) return false;
statementType * sts = grouped_ statements[anchor];
if (sts = NULL) return false;
while (sts # NULL) {
if (sts—lastresort # lastresort) { sts = sts—next; continue;}
if ((candidate— spinelength -1) # sts—numargs)
{ sts = sts—next; continue; }
theta.clear();
term * head = sts—stmi—le()—re();
term x body = sts— stmit—rc();
(debug matching 2 92e)
if (redex_match(head, candidate, theta)) {
(try match::eager statements 91b)
ltime++;
(try match::unimportant things 91c)
term x temp = NULL;
if (sts—noredex) temp = body—reuse();
else {
temp = body— clone();
temp— subst(theta);
(try match::reduce temp to simplest form 89a)
}
(try match::put reduct in place 88b)
(try match::output answer 92b)
return true;
}
(debug matching 4 93a)
sts = sts—rneat;

}

=x int bm_ size = statements.size();
for (int j=0; j<bm_ size; j++) {
if (statements|j|.lastresort # lastresort) continue;
<try match::find special cases where no matching is required>
theta.clear();
term x head = statements|j].stmt—lc()—rc();
term x body = statements|j].stmt—rc();
<debug matching 2>
if (redex_match(head, candidate, theta)) {
<try match::eager statements>
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ltime++;
<try match::unimportant things>
term x temp = body— clone();
temp— subst(theta);
<try match::reduce temp to simplest form>
<try match::put reduct in place>
<try match::output answer>
return true;
}
<debug matching 4>
b
return false;
¥
Defines:
try_match_n_reduce, used in chunk 85a.

Uses isF 30a, 1c 30e, rc 30e, redex_match 99a 99b 100a, reduce 84a 85a, reuse 43d, spineTip 32e, subst 52a,
and substitution 51.

Comment 3.1.72. Certain (sub)computations are cached in the vector cachedStatements during
run-time. We try out these cached statements first in simplifying a redex. The pattern matching
operation used in this special case is just identity checking. Maybe we need to check for a-
equivalence in general.

(try match::try cached statements first 88a)=
int cs_size = cachedStatements.size();
for (int j=0; j#cs_size; j++) {
term x head = cachedStatements|j]— stmt—lc()—re();
term x body = cachedStatements|j]— stmt—rc();
theta.clear(); // vector<substitution> theta;
if (candidate— equal(head) V redex match(head, candidate, theta)) {
// cerr << "Using cached computation." << endl;
term * temp = body— clone();
if (theta.size()) { temp— subst(theta); }
ltime++; cltime++;
(try match::put reduct in place 88b)
return true;
}
}
Uses equal 34b, 1c 30e, rc 30e, redex_match 99a 99b 100a, subst 52a, and substitution 51.

Comment 3.1.73. This is how we put the reduct (temp) in place of the redex (candidate).
Depending on whether candidate has a parent, we either change some pointers or do an in-place
replacement.

(try match::put reduct in place 88b)=
if (parent) { parent— fields[cid] = temp; candidate— freememory(); }
else { candidate—replace(temp); temp— freememory(); }

Uses replace 42b.

Comment 3.1.74. In the proposed leftmost outermost reduction scheme, we need to find the
leftmost outermost redex in t* immediately after rewriting a subterm r in ¢ with s to obtain
t* = t[s/r]. We are probably better off doing localised surgeries on terms. After one rewriting
step, instead of looking for the next redex in t*, we will try to reduce s as much as possible before
jumping out to consider reducing ¢t*. This simple change in the redex selection order speeds things
up tremendously, at no cost to correctness. We will have problems with list/set comprehension
though, in particular infinite lists and infinite sets.
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89a (try match::reduce temp to simplest form 89a)=
#ifdef ESCHER
// do_local search = false;
if (moutermost A do_local_search N —lastresort A temp—tag # D) {

}

// cerr << "reduce temp to simplest form\n";
do_local _search = false;
term x temp3 = NULL; // term * temp2 = NULL;
if (optimise) { // temp2 = head->clone(); temp2->subst(theta);
// temp2->unshare(NULL, 1);
temp3 = temp— clone(); }
nestingdepth++;
int time old = ltime;
temp—unshare(NULL, 1); // we should not need to do this operation
bool reduced = true;
int interval = 0; // this makes sure the local operation doesn’t go
// too deep, which can happen if we do this too early

while (reduced) {

reduced = temp—reduce(mpath, NULL,0, temp,tried);

if (temp—tag = D) break;

if (interval++ > 500) break;
}
nestingdepth—;
if (optimise) { (try match::cache computation 89b) }
do_local _search = true;

#endif

Uses reduce 84a 85a and subst 52a.

89b (try match::cache computation 89b)=
if (itime - time_old > 30 A head—isApp() A

cacheFuncs.find(head—lc()— cname) # cacheFuncs.end()) {

// int osel = getSelector(); setSelector(STDERR);

//  temp3->print(); ioprint(" = "); temp->print();

// ioprint("; — "); ioprint(ltime-time _old); ioprintin();

// ioprintln(); setSelector(osel);

statementType x st = new statement Type();

st—stmt = newT2Args(F, iEqual);

st— stmt—init T2Args(temp3, temp— clone());
temp3—slabelStaticBoundVars(); // temp->labelStaticBoundVars();
st— stmt— collectShared Vars();

cachedStatements.push_ back(st);

} else temp3— freememory();

Uses collectSharedVars 94a, getSelector 164 165, iEqual 145, initT2Args 34a, ioprint 164 165,
ioprintln 164 165, isApp 30a, labelStaticBoundVars 46f, 1c 30e, newT2Args 33c, and setSelector 164 165.
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Comment 3.1.75. The different simplification routines described in 3.1.1 are used here. We

check the form of candidate before attempting to apply suitable routines.

90 (try match::different simplifications 90)=
int msg = -5;
if (candidate—isFunc2Args()) {
int f = candidate— spineTip()— cname;
if (f = iEqual) {
if (candidate— simplifyEquality(parent, cid))
{ msg = 1; (simpl output 91a) }
} else if (f = iAnd) {
if (candidate— simplifyConjunction())
{ msg = 2; (simpl output 91a) }
if (candidate— simplifyConjunction2(parent, cid))
{ msg = 3; (simpl output 91a) }
}
if (candidate— simplifyInequalities(parent, cid))
{ msg = 4; (simpl output 91a) }

if (candidate— simplifyArithmetic(parent, cid))
{ msg = 5; (simpl output 91a) }

}

if (candidate—isApp()) {
if (candidate— simplifyExistential(parent, cid))
{ msg = 6; {simpl output 91a) }

if (candidate— simplify Universal(parent, cid))
{ msg = 7; (simpl output 91a) }

if (candidate— betaReduction(parent, cid))
{ msg = 8; (simpl output 91a) }

if (candidate— simplifyMath(parent, cid))
{ msg = 9; (simpl output 91a) }

}

Uses betaReduction 69a, iAnd 145, iEqual 145, isApp 30a, isFunc2Args 32f, simplifyArithmetic 65,
simplifyConjunction 7la, simplifyConjunction2 73, simplifyEquality 61, simplifyExistential 75a,
simplifyInequalities 67, simplifyMath 68, simplifyUniversal 78a, and spineTip 32e.
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Comment 3.1.76. The redex is marked out in the answer. We do not print the term before the
simplification; that would be too messy though.

(simpl output 91a)=

ltime++;

//if (verbose && ltime % 100 == 0) {

if (verbose) {
int osel = getSelector(); setSelector(STDOUT);
ioprint("Time = "); ioprintin(ltime);
switch (msg) {
case 1: ioprint(egsimpl); break;
case 2: ioprint(andsimpl); break;
case 3: ioprint(and2simpl); break;
case 4: ioprint(inegsimpl); break;
case 5: ioprint(arsimpl); break;
case 6: ioprint(exsimpl); break;
case T: ioprint(uvsimpl); break;
case 8: ioprint(betasimpl); break;
case 9: ioprint(mathsimpl); break;
}
candidate—reder = true;
ioprint("Answer: "); root—print(); ioprint("\n\n");
candidate—redex = false; setSelector(osel);

}

return true;

Uses getSelector 164 165, ioprint 164 165, ioprintln 164 165, and setSelector 164 165.

Comment 3.1.77. We now look at how eager statements are handled. When we matched a
subterm of the form (f ¢1...¢,) with the head of a statement that is to be evaluated eagerly, we
proceed to evaluate the arguments ¢, to ¢, first. The whole expression can only be rewritten if
none of the ¢;s contain a redex.

(try match::eager statements 91b)=
if (sts—eager A candidate—isApp()) {
= try reduce the arguments first, return
true if any one can be reduced *—+
for (int i=candidate— spinelength-1; i#£0; i—) {
/% go to argument spinelength - i argument */
term x arg = candidate;
for (int j=1; j#i; j+) arg = arg—lc();
if (arg—rc()—reduce(mpath,arg,1,root, tried))
return true;
}
}

Uses isApp 30a, 1c 30e, rc 30e, and reduce 84a 85a.

Comment 3.1.78. We are done talking about important things. We now list the not-so-important
things like reporting and debugging checks.

(try match::unimportant things 91c)=
(try match::debugging code 1 92¢)
(debug matching 3 92f)
(try match::output pattern matching information 92a)
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(try match::output pattern matching information 92a)=
//if (verbose && ltime % 100 == 0) {
if (verbose) {

int osel = getSelector(); setSelector(STDOUT);
ioprint("Time = "); toprintin(ltime);
ioprint("Matched "); head— print(); ioprintin(); // ioprint(" and ");
// // candidate->print();
// // ioprint("\nReplacing with "); body->print(); ioprint(’ );
// // printTheta(theta);

candidate—reder = true;
ioprint("Query: "); root—print(); ioprintin();
candidate—reder = false; setSelector(osel);

}

Uses getSelector 164 165, ioprint 164 165, ioprintln 164 165, printTheta 109e 110a, and setSelector 164 165.

(try match::output answer 92b)=
//if (verbose && ltime % 100 == 0) {
if (verbose) {
int osel = getSelector(); setSelector(STDOUT);
ioprint("Answer: "); root—print(); ioprint("\n\n"); setSelector(osel);}
Uses getSelector 164 165, ioprint 164 165, and setSelector 164 165.

Comment 3.1.79. This is a simple check to make sure the candidate redex and the instantiated
head are really a-equivalent.

(try match::debugging code 1 92¢)=
#ifdef MAIN_DEBUG1

term *x headl = head— clone();
head1— subst(theta);

head1— applySubst();
assert(head1— equal( candidate));

#endif
Uses equal 34b and subst 52a.

Comment 3.1.80. These code allows us to track what is going on during matching.

(debug matching 1 92d)=
if (verbose = 3) {
setSelector(STDOUT);
ioprint("Trying to redex match "); candidate— print(); ioprintin();
}

Uses ioprint 164 165, ioprintln 164 165, and setSelector 164 165.

(debug matching 2 92¢)=
if (verbose = 3) { ioprint("\tand "); head—print(); ioprint(" ... "); }
Uses ioprint 164 165.

(debug matching 3 92f)=
if (verbose = 3) ioprint("\t [succeed]\n");
Uses ioprint 164 165.
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(debug matching 4 93a)=
if (verbose = 3) ioprint("\t [failed]\n");
Uses ioprint 164 165.

Comment 3.1.81. We now look at disruptive operations.

(try disruptive 93b)=
ok
bool try disruptive(vector<int> mpath, term x candidate,
term x parent, unint cid, term x root,
int & tried) {
int osel = getSelector(); setSelector(SILENT);
if (candidate—isFunc2Args(iAssign)) {
term x argl = candidate—lc()—re();
// reduce arg2
ioprint("simplifying "); candidate—rc()—print(); ioprintln();
int tried2 = 0;
bool reduced = true;
while (reduced) {
reduced = candidate—rc()— reduce(mpath, NULL,
0, root, tried2);
if (candidate—rc()—tag = D) break;
b
ioprint("result = "); candidate—rc()—print(); ioprintin();
// update statement
for (unint i=0; i#£statements.size(); i++) {
if (statements[i].anchor = argl—cname) {
assert(statements|i].persistent);
statements|i].stmt—re()— freememory();
statements|i|.stmi— fields|1] = candidate—rc();

statements|i].stmt— print(); ioprintin();
setSelector(osel);
break;

}
}

// candidate = Succeed
candidate— fields[1] = NULL;
term * temp = new_ term(D, iSucceeded);
if (parent) { parent— fields|cid] = temp;
candidate— freememory(); }
else { candidate—replace(temp); temp— freememory(); }
return true;

}

return false;
*—-
Uses getSelector 164 165, iAssign 145, iSucceeded 145, ioprint 164 165, ioprintln 164 165, isFunc2Args 32f,
1c 30e, new_term 40a, rc 30e, reduce 84a 85a, replace 42b, and setSelector 164 165.
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3.1.3 Pattern Matching
3.1.3.1 Preprocessing of Statements

Comment 3.1.82. During pattern matching, the name of bound variables in the head of a pro-
gram statement s = ¢ needs to be changed repeatedly. The corresponding variables in ¢ must be
changed accordingly to preserve the original meaning of the statement. As this is a key operation
that needs to be done repeatedly very many times, an efficient algorithm is needed. The key idea
here is that we can use the same variable node to represent corresponding variables in s and t.
This way, when we change a variable in s during pattern matching, all corresponding variables
in s and ¢ get changed automatically. The term representations produced by the parser are trees
without shared node. The following function collectSharedVars implements this kind of sharing.
The procedure is simple. We first collect together all the shared variables in s and ¢ separately
using shareLambdaVars. Then we redirect shared variables in ¢ to their corresponding variables
in s using shareHeadLambdaVars.

Note that only bound variables are shared by this operation. The correctness of the function
labelStaticBoundVars (see Comment 2.2.43) is thus not affected.

(term::function definitions 32¢)+=

void term::collectShared Vars() {
term x head = fields|0]— fields[1];
term x body = fields|[1];
vector<term x> headlvars;
head—s shareLambda Vars(headlvars, true);
body— shareLambda Vars(headlvars, false);
body— shareHeadLambda Vars(headlvars);

}

Defines:
collectSharedVars, used in chunks 89b and 111.
Uses shareHeadLambdaVars 96a and shareLambdaVars 94b.

Comment 3.1.83. The input vector 1vars is used to collect all the lambda variables in a term.
We only need to do this for the head. The input parameter use controls this. The procedure of
shareLambdaVars is as follows: every time we see a term of the form Ax.t, we use shareVar to
redirect all occurrences of z in ¢ to point to the x straight after the \ sign.

(term::function definitions 32e)+=
void term::shareLambda Vars(vector<term x> & lvars, bool use) {
if (tag = ABS) {
if (use) lvars.push_ back(fields[0]);
fields[1]— share Var(fields[0], this, 1);
fields[1]— shareLambda Vars(lvars, use);
return;
}
int size = fieldsize;
for (int i=0; i#£size; i++)
fields[i|— shareLambda Vars(lvars, use);
}
Defines:

shareLambdaVars, used in chunks 94a and 111.
Uses shareVar 95a.

Comment 3.1.84. The procedure shareVar with input variable x is only ever called within the
correct scope t of a term Az.t. (If a subterm Az.ty occurs inside ¢, we will skip that subterm.)
This guarantees that all the variables that get redirected in the (tag == V) case are exactly those
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variables bound by the input variable var. The pointer parent->fields[id] points to the current
term.

(term::function definitions 32e)4=
void term::share Var(term * var, term * parent, unint id) {
if (tag= SV V tag= D V tag = F) return;
if (tag = ABS) { if (var—cname = fields|0]— cname) return;
fields[1]— share Var(var, this, 1); return; }
if (tag= V) {
if (cname = var—cname) {
parent— fields|id] = var—reuse();
var—parents.push_ back(&parent— fields|id));
this— freememory(); }
return;
}
unint size = fieldsize;
for (unint i=0; i#£size; i++) fields[i|— share Var(var, this, i);
}

Defines:
shareVar, used in chunks 94b and 111.
Uses reuse 43d.

Comment 3.1.85. Pointers to term schema pointers that got redirected in shareVar are stored
in parents. These are then used for further redirection in shareHeadLambdaVars. At present, this
is the only place where parents is used. The parents parameter need not be initialized during
term construction. It need not be copied during cloning. Its value also does not get affected during
replacing.

(term vector parts 30b)+=
vector<term xx> parents;
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Comment 3.1.86. The procedure for shareHeadLambdaVars is as follows. Every time we see a
term of the form Axz.t, we redirect z and all occurrences of z in ¢ pointing to it (these are recorded
in parents) if « is in hlvars and then we recurse on ¢.

(term::function definitions 32e)+=
void term::shareHeadLambda Vars(vector<term x> & hlvars) {
if (hlvars.empty()) return;
if (tag = ABS) {
int size = hlvars.size();
for (int i=0; i#size; i++) {
if (fields|0]— cname # hlvars|i|— cname) continue;
int psize = fields[0]— parents.size();
for (int j=0; j#£psize; j++) {
*(fields[0]— parents|j]) = hlvars[i]|—reuse();
fields[0]— freememory();

fields[0]— freememory();
fields[0] = hlvars|i|—reuse();
break;
}
fields|1]— share Head Lambda Vars(hlvars);
return;
}
int size = fieldsize;
for (int =0; i#£size; i++)
fields|i|— shareHeadLambda Vars(hlvars);
}
Defines:

shareHeadLambdaVars, used in chunks 94a and 111.
Uses reuse 43d.

Comment 3.1.87. Free variables in program statements may also need to be changed during
pattern matching. To do away with the need for tree traversal, we employ the same trick to share
corresponding free variables in the head and body of statements. This is done in a preprocessing
step. The following function performs this task. It works as follows. Every time we see a free
variable x in the head, we traverse the body to redirect all free occurrences of = to the one in the
head. Redirection is accomplished using shareFreeVar. We assume that labelStaticBoundVars
has been called to label the variables.

(term::function definitions 32¢)4=
void term::collectFree Vars(term * bodyparent, unint id) {
if (tag = V A isFree())
bodyparent—s fields|id|— share Free Var(this, bodyparent, id);
if (tag= SV V tag= D V tag = F) return;
if (tag = ABS) fields[1]— collectFree Vars(bodyparent, id);
int size = fieldsize;
for (int =0; i#size; i++)
fields|i|— collectFree Vars(bodyparent, id);
}
Defines:

collectFreeVars, used in chunk 111.
Uses isFree 46e and shareFreeVar 97a.

Comment 3.1.88. The return value of shareFreeVar can be used to implement the idea de-
scribed in Comment 3.1.90.
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(term::function definitions 32e)+=
bool term::shareFree Var(term * v, term x parent, unint id){
if (tag = V A isFree() A cname = v—cname) {
freememory(); parent— fields[id] = v—reuse(); return true; }

if (tag= SV V tag= D V tag = F) return false;
if (tag = ABS) return fields[1]|— shareFree Var(v, this, 1);
bool ret = false;
int size = fieldsize;
for (int =0; i£size; i++)

if (fields[i]— shareFreeVar(v, this, 1)) ret = true;
return ret;

}

Defines:
shareFreeVar, used in chunks 96b and 111.
Uses isFree 46e and reuse 43d.

Comment 3.1.89. The following function pre-computes all the free variables inside a subterm
and put them in the vector preFVars. Pointers to terms instead of strings are used to allow us to
rename free variables directly without doing another traversal.

(term parts 29b)+=
vector<term x> preFVars;

(term::function definitions 32e)+=
bool term::precomputeFree Vars() {
if (tag= SV V tag= D V tag = F) return false;
if (tag = V A isFree()) {
preFVars.push_ back(this);
return true;

}
if (tag = ABS) {
bool res = fields[1]—precomputeFree Vars();
if (res)
preFVars = fields|1|—preF Vars;
return res;
}
int size = fieldsize,
for (int =0; i#size; i++) {
bool res = fields|i|—precomputeFree Vars();
if (—res) continue;
int size2 = fields[i|—preF Vars.size();
for (int j=0; j#£size2; j++)
preFVars.push_ back(fields|i|—preF Vars|j]);
}

return —preF Vars.empty();

}
Defines:

precomputeFreeVars, used in chunk 111.
Uses isFree 46e.

Comment 3.1.90. UNIMPLEMENTED IDEA: A variable that occurs in the head but not in
the body of a statement can be flagged so that we do not have to put its substitution in 6.
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3.1.3.2 Redex Determination

Definition 3.1.91. A redex of a term ¢ is an occurrence of a subterm of ¢ that is a-equivalent to
an instance of the head of a statement.

Fact 3.1.92. Two a-equivalent terms can only differ in the names of their bound variables. (See
also [Llo03, pp. 71].)

Algorithm 3.1.93. To determine whether a term ¢ is a redex with respect to the head h of
a statement, we need to determine whether there exists a term substitution 6 such that hé is
a-equivalent to t. There is a simple algorithm for doing that:

0« {}
while (h8 # t) do

0 < leftmost innermost occurrence in ¢ such that o is also in h and hf, # t,;
if hf|, and |, are both A\-terms then

change name of bound variable in hf), to that in ¢|,, renaming free
variables in hf)|, to avoid free-variable capture whenever necessarys;

else if hf), is a free occurrence of a variable x in h and no free variable in ¢,
would be captured by the substitution {z/t,} then

0« 0U{x/t|o};

else return failure;
return 6;

Comment 3.1.94. The no-free-variable-capture condition in the else if case is needed to prevent
matching on statements like h = Ay.z and t = A\y.(gy). Without the condition, we would bind
(gy) to x, but the end result of doing h{x/(gy)} is actually Az.(gy), which is not equal to t. (See
Definition 2.5.3 in [L1003].) If this kind of matching is desired, a syntactical variable must be used.

Comment 3.1.95. Algorithm 3.1.93 does not take syntatical variables into account. Concep-
tually, given an equation with syntatical variables in it, we should first initialise the syntactical
variables to obtain a valid statement. This will then allow us to use Algorithm 3.1.93 to do pattern
matching on it. In practice, we do the instantiation of syntactical variables and pattern matching
at the same time. The following modified algorithm is used.

Algorithm 3.1.96. Given terms h with syntactical variables in it and a candidate redex ¢, the
algorithm decides whether there exists 6 such that hé is a-equivalent to t.

0« {}
while (h8 #t) do

0 < leftmost innermost occurrence in ¢ such that o is also in h and hf), # t),;
if hf), and t|, are both A-terms then

change name of bound variable in hf), to that in ¢|,, renaming free
variables in hf)|, to avoid free-variable capture whenever necessary;

else if ho), is a free occurrence of a variable z in h and no free variable in £,
would be captured by the substitution {z/#,} then

00U {x/t|,};
else if ho|, is a syntactical variable x in h
0« 06U {x/t‘o};

else return failure;

return 6;
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Provided syntactical variables only ever occur at places where a (normal) variable can appear, I
think the algorithm is complete in the sense that if there is a way to instantiate the syntactical
variables so that a matching can occur, Algorithm 3.1.96 will find it.

Comment 3.1.97. Algorithm 3.1.96 renames variables as necessary when both hf)|, and ¢, are
A-terms. Renaming of free variables in h is safe only because the head of a statement cannot
contain more than one occurrence of a free variable.

Comment 3.1.98. Typically, the i considered in Algorithm 3.1.96 is the head of a statement
h = b. When we rename free variables in h, we also need to rename the corresponding variables
in b so as not to change the original meaning of the statement. How about the bound variables?
When we change a bound variable in A, do we need to rename its corresponding variables in b?

In the presence of syntactical variables, the answer is a definite yes. Consider the statement
(f Az.u) = Az.u. Given candidate redex (f Ay.(g y)), we will get the incorrect answer A\x.(g y) if
we do not rename the z in the body of the statement during pattern matching. Efficient algorithms
for doing such renaming of variables are described in Comments 3.1.82 and 3.1.87.

Comment 3.1.99. There is a simple way to realise Algorithm 3.1.96. Start with two pointers
pt and pp, pointing, respectively, at ¢t and h. Denote by [p;] and [pn] the subterms of ¢ and h
pointed to by p; and pp. Move the pointers forward one step at a time to the next subterm in the
left-to-right, outermost-to-innermost order. At each time step, if [py] # [p;] then:

—_

. if [pp] is a syntactical variable, add {[ps]/[p:]} to 6;

2. else if [py] is a variable free in h and the free variable capture condition does not occur, add
{[pnl/[pe]} to 6;

3. else if [p;] and [pp] are both lambda terms and z; and x;, are the corresponding lambda
variables, then set all occurrences of xj in [py] to x4, renaming as necessary free variables
that get captured as a result;

4. else return failure.

(pattern-match::function declarations 99a)=
bool redex match(term * head, term x body, vector<substitution> & theta);
bool redex_match(term * head, term * body, vector< substitution> & theta,
vector<term x> bindingAbss, term * orig_head);

Defines:
redex_match, used in chunks 57a, 87, 88a, and 102-104.
Uses substitution 51.

(pattern-match::functions 99b)=
bool redex_match(term * head, term * body, vector<substitution> & theta) {
vector<term x> bindingAbss;
return redez_match(head, body, theta, bindingAbss, head);

}

Defines:
redex_match, used in chunks 57a, 87, 88a, and 102—-104.
Uses substitution 51.
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100a (pattern-match::functions 99b)+=
bool redex_match(term * head, term x body, vector<substitution> & theta,
vector<term x> bindingAbss, term x orig_head) {
kind head_tag = head—tag;
kind term_tag = body—tayg;

if (head tag = SV) { (redex-match::case of SV 100b) }
if (head_tag = V) { (redex-match::case of V 101c) }
if (head_tag # term_tag) return false;

(redex-match::case of constant 102b)

if (head tag = APP) { (redex-match::case of APP 102c) }

if (head_tag = PROD) { (redex-match::case of PROD 103a) }

if (head tag = ABS) { (redex-match::case of ABS 103b) }

if (head tag = MODAL) { (redex-match::case of MODAL 104) }
assert(false); return false;

}

Defines:
redex_match, used in chunks 57a, 87, 88a, and 102—-104.
Uses substitution 51.

Comment 3.1.100. Here we consider matching on syntactical variables. A syntactical variable
matches anything, if all the constraints are obeyed, that is.

100b (redex-match::case of SV 100b)=
(redex-match::case of SV::check constraints 101a)
substitution sub(head— cname, body);
theta.push_ back(sub);
return true;

Uses substitution 51.
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Comment 3.1.101. The constraint /VAR/ means that the term bound to the current syntactical
variable must be a variable. The constraint /CONST/ means that the term bound to the current syn-
tactical variable must be a data constructor or a function symbol. The constraint /EQUAL,x_SV/,
where x_SV is another syntactical variable appearing before the current one, means that the term
bound to the current syntactical variable must be equal to the term bound to x_SV.

(redex-match::case of SV::check constraints 101a)=
condition * constraint = head— cond,
if (constraint) {
int ctag = constraint—tag;

if (ctag = CVAR A term_tag # V) return false; // problematic?
else if (ctag = CCONST A term_tag # D A term_tag # F) return false;
else if (ctag = CEQUAL) {
// if (term_tag = D && term_tag != V) return false;
term * bound = findBinding(constraint— suname, theta);
(error handling::get previously bound 101b)
if (body— equal(bound) = false) return false;
} else if (ctag = CNOTEQUAL) {
// if (term_tag != D) return false;
term * bound = findBinding(constraint— suname, theta);
(error handling::get previously bound 101b)
if (body— equal(bound) = true) return false;
}
// assert(ctag = CVAR); assert(ctag = CNOTEQUAL);

}

Uses equal 34b and findBinding 110b 110c.

(error handling::get previously bound 101b)=
if (bound = NULL) {
setSelector(STDERR);
ioprint("The constraint EQUAL or NOTEQUAL on syntactical "
"variables is used incorrectly; it appears before "
"its argument is instantiated.\n");
assert(false);

}

Uses ioprint 164 165 and setSelector 164 165.

Comment 3.1.102. We next examine the case of variables. We do not have to do anything if
head is identical to body. If head is a bound variable, then body must be identical to head for
matching to succeed.

(redex-match::case of V 101c)=
if (term_tag = V A head— cname = body— cname) return true;
if (head—isFree() = false) return false;
if (head—cname = iWildcard) return true;

(redex-match::case of V::check free variable capture condition 102a)

substitution sub(head— cname, body);
theta.push_ back(sub);
return true;

Uses iWildcard 145, isFree 46e, and substitution 51.
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Comment 3.1.103. We need to check that no variable in body would be captured by the sub-

stitution head/body.

(redex-match::case of V::check free variable capture condition 102a)=

int captd,;

if (body—s captured(bindingAbss, captd)) {

setSelector(STDERR);

cerr K" x* Matching Failed: Free variable capture in redex-match.\n";
ioprint("head = "); head— print(); ioprintln();
"5 body— print(); toprintin();

ioprint("term
assert(orig_head);

ioprint("orig head = "); orig_head— print(); ioprintin();

return false; }

Uses captured 48b, ioprint 164 165, ioprintln 164 165, and setSelector 164 165.

Comment 3.1.104. We now look at the case when head is a constant.

(redex-match::case of constant 102b)=

if (head_tag = F) return (head— cname = body— cname);

if (head_tag = D) {
if (
if (

head—isfloat # body—isfloat) return false;

head—isint # body—isint) return false;

if (head—isfloat A body—isfloat) return (head—numf = body—numf);
else if (head—isint A body—isint) return (head—numi = body— numi);
return (head— cname = body— cname);

Comment 3.1.105. The case of applications is particularly simple. We first try to match the

left child. If successful, we match the right child.

(redex-match::case of APP 102¢)=

if (—redex_match(head—lc(),body—lc(), theta, bindingAbss, orig _head))

return false;

return redex_match(head—rc(), body—rc(),theta,bindingAbss,orig head);
Uses 1c 30e, rc 30e, and redex_match 99a 99b 100a.

Comment 3.1.106. These can be used to debug redex_match.

(redex-match::case of APP::debug matching 1 102d)=

if (verbose = 3) {

ioprint("\n\t\tmatching "); head—lc()— print();
ioprint(" and "); body—lc()—print(); ioprint("

}

Uses ioprint 164 165 and 1lc 30e.

(redex-match::case of APP::debug matching 2 102¢)=

if (verbose = 3) {
ioprint(" successful\n");

ioprint("\t\tmatching "); head—rc()—print(); ioprint(" and ")

body—rc()—print(); ioprint("

Uses ioprint 164 165 and rc 30e.

‘)

)

");

i
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Comment 3.1.107. We now look at the case of products. We cannot assume that the dimensions
of head and body are equal even when the type-checker says they have the same types. Why?
Well, sometimes we use a function name to represent data.

103a (redex-match::case of PROD 103a)=
unint size = head— fieldsize;
if (size # body— fieldsize) return false;

for (unint i=0; #size; i++)
if (—redex match(head— fields|d],body— fields|i], theta,
bindingAbss,orig_head))
return false;
return true;
Uses redex_match 99a 99b 100a.

Comment 3.1.108. The last case is that of abstraction. We change the name of lambda variables
to avoid having to worry about a-equivalence later on.

103b (redex-match::case of ABS 103b)=
if (head— fields|0]—tag = SV) {
redex_ match(head— fields|0],body—s fields|0],theta,bindingAbss,orig_head);
} else { (redex-match::case of ABS::change variable name 103c) }
bindingAbss.push_ back(head);
return redex_ match(head— fields[1],body— fields|1],theta,bindingAbss,orig_head);
Uses redex_match 99a 99b 100a.

Comment 3.1.109. If necessary, we need to change the name of the bound variable in head so
that it is the same as the bound variable in body. In so doing, we may inadvertently capture a
free variable inside head. (This is an extremely rare scenario. I have never seen it happen in any
non-simulated computation.) Another variable renaming is necessary in this case.

Thanks to the preprocessing we did (see Comments 3.1.82 and 3.1.87), we need to set only the
name of one variable in each case.

103c (redex-match::case of ABS::change variable name 103c)=
int term_ var = body— fields[0]— cname;
if (head— fields|[0]— cname # term_ var) {
int size = head— preFVars.size();
for (int =0; i#size; i++)
if (term_var = head—preF Vars|i|—cname) {
(redex-match::write a small warning message 103d)
head— preF Vars|i|— cname = newP Var();

}

head— fields|[0]— cname = term_ var;

}

Uses newPVar 148c.

103d (redex-match::write a small warning message 103d)=
int osel = getSelector(); setSelector(STDOUT);
ioprint(" ** Trouble. Variable "); head—preF Vars[i|— print();
ioprint(" captured after lambda variable renaming.\n");
ioprint("head = "); head—print(); ioprintln();
ioprint("term = "); body— print(); ioprintln();
setSelector(osel);
Uses captured 48b, getSelector 164 165, ioprint 164 165, ioprintln 164 165, and setSelector 164 165.
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104 (redex-match::case of MODAL 104)=
if (head—modality # body—modality) return false;
return redex_ match(head— fields|0],body— fields|0],theta,bindingAbss,orig_head);
Uses redex_match 99a 99b 100a.
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Comment 3.1.110. We now look at some instructive test cases for the procedure. Evaluating
the following program

(f \y.x) = True
E \y.(g y )

will result in

** Matching Error: Free variable capture in redex-match.
Final Answer: (f \y.((g y) y)).

To force a matching here, we can use the statement (£ \y.x_SV) = True instead. Evaluating the
same query will then result in True.

Evaluating the program

E\x.(gxy) =(Eyy
E \y.(gy )

will result in

** Trouble. Variable y captured after lambda variable renaming.
** Matching Failed: Free variable capture in redex-match.
Final Answer: (f \y.((g y) y)).

The lambda variable x in the head of the statement is successfully renamed at first. Matching
fails when we subsequently try to match the free variable y in the head of the statement with the
bound variable y in the query. The reader should convince herself that matching should indeed
fail in this case.

Evaluating this next prggram

(f \x.(gyx)) =((@yy
(f \y.(g z y¥))

will produce the answer ((g z) z).

3.2 Interaction with the Theorem Prover

3.2.1 Rank k Computations

(term::function definitions::unused 105)=
#ifndef ESCHER
#include "tableaux.h"
bool term::simplify WithTP() {
return false; // disable this function to begin with
if (isVar() Vv isD() V isF()) return false;
if (isAbs()) return fields[1]— simplify With TP();
if (isProd()) {
for (unint i=0; i£fieldsize; i++)
if (fields|i|— simplify WithTP()) return true;
return false;
}
/* if done previously, return */
if (isApp() A le()—isApp() A le()—le()—isD(iTpTag))
return false;
/* we don’t do terms with free variables inside */
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getFree Vars();
if (frvarsize > 0) {
assert(isApp() V isModal());
if (isApp()) {
if (le()—simplifyWithTP()) return true;
return rc()—simplify WithTP();
} else if (isModal()) { assert(false); }
}
/% check that the type is Bool */
pair<type *, vector<term_ type> > res = mywell Typed(this);
if (res.first—getTag() # "Bool") {
assert(isApp() V isModal());
if (isApp()) {
if (lc()—simplify WithTP()) return true;
return rc()—simplify With TP();
} else if (isModal()) { assert(false); }

}
if (=(isApp() A le()—isF(iTpHelp))) {
assert(isApp() V isModal());
if (isApp()) {
if (le()—simplifyWithTP()) return true;
return rc()— simplify With TP();
} else if (isModal()) { assert(false); }

(simplifyWithTP::call theorem prover 107a)

}

bool term::simplify WithTP2() {
(simplifyWithTP::call theorem prover 107a)
¥

#endif

Defines:
simplifyWithTP, used in chunk 111.
simplifyWithTP2, used in chunk 111.

Uses getFreeVars 45b, iTpHelp 145, iTpTag 145, isAbs 30a, isApp 30a, isD 30a, isF 30a, isModal 30a, isProd 30a,
isVar 30a, 1c 30e, mywellTyped 28b, rc 30e, and term_type 17b.
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(simplifyWithTP::call theorem prover 107a)=
term x theorem = rc();
vector<pair<term x,bool> > tlist,
// insert goal formula into tableau
term x goal = new_term(APP);
// goal->lc = new_term(F, iNot); goal->rc = theorem->clone();
goal—insert(new_term(F, iNot)); goal—insert(theorem— clone());
pair<term *,bool> gent(goal—normalise(), false);
tlist.push_ back(gent);

// prove theorem

backchain = true;

Tableauz tab(tlist);

TruthValue ret = tab.expand();

if (verbose) {
ioprint("Attempted Proof:\n "); tab.print();
joprint("  Answer : "); ret.print(); ioprintln(" ;");

}

tab.freememory();

if (ret.value = MYTRUE) {
le()— freememory(); re()— freememory(); fieldsize = 0;
tag = D; cname = iTrue;
return true;

} else {
term x temp = new_ term(APP);
+x temp—lc = new_term(APP);
temp—rc = theorem—s clone();
temp—lc—lec = new_term(D, iTpTag);
temp—lc—rc = new_term(D, iDontKnow); =+
temp—insert(new_ term(APP));
temp—insert(theorem—s clone());
temp—lc()—insert(new_term(D, iTpTag));
temp—lc()—insert(new term(D, iDontKnow));
replace(temp);
temp— freememory();

}

return false;

Uses iDontKnow 145, iNot 145, iTpTag 145, iTrue 145, insert 30e, ioprint 164 165, ioprintln 164 165, 1c 30e,
new_term 40a, normalise 57b, rc 30e, and replace 42b.

3.2.2 Free Variable Instantiation

Comment 3.2.1. In the theorem proving mode, we sometimes need to replace universally quan-
tified variables with so-called free variables. These needs to be instantiated at some stage. One
important mechanism used to instantiate them is to find matching between subformulas that would
allow us to close off branches. The matching algorithm is very similar to redex_match, except
that we concentrate only on free variables and do not do a-conversion.

(pattern-match::function declarations 99a)-+=
bool freevar _match(term x fmll, term x fml2, vector<substitution> & theta);
bool freevar match(term x fmll, term x fml2, vector<substitution> & theta,
vector<term x> bindingAbss);

Uses freevar_match 108a and substitution 51.
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108a (pattern-match::functions 99b)+=
bool freevar _match(term x fmll, term x fml2,
vector<substitution> & theta) {
vector<term x> bindingAbss;
return freevar _match(fmll, fml2, theta, bindingAbss);

}

Defines:
freevar_match, used in chunks 107-109.
Uses substitution 51.

108b (pattern-match::functions 99b)+=
bool freevar match(term * head, term x body, vector<substitution> & theta,
vector<term x> bindingAbss) {

kind head_tag = head—tag;

kind term_ tag = body—tag;

assert(head_tag # SV /+ && head tag != MODALx/);

if (head_tag= V) {

if (isUVar(head— cname) N\ —body— occursFree(head— cname))
{ term * orig_head = NULL;

head—validfree = true; head— free = true;
(redex-match::case of V 101c) }

if (term_tag= V) {
if (isUVar(body— cname) A —~head— occursFree(body— cname))
{ term * headtemp = head,
head = body;
body = headtemp;
term x orig_head = NULL;
head—validfree = true; head— free = true;
(redex-match::case of V 101c)

}

if (head tag # term_ tag) return false;

if (head _tag= V A term_tag= V) {
if (head— cname # body— cname) return false;
return true;

}

(redex-match::case of constant 102b)

if (head tag = APP) { (freevar-match::case of APP 109b) }

if (head tag = PROD) { (freevar-match::case of PROD 109d) }

if (head tag = ABS) { (freevar-match::case of ABS 109a) }

if (head_tag = MODAL) { (freevar-match::case of MODAL 109c) }
assert(false); return false;

}

Uses freevar_match 108a, isUVar 55a, occursFree 47b, and substitution 51.
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Comment 3.2.2. One significant case where redex_match and freevar_match differs is in the
case of abstractions. In redex_match, we will rename the name of bound variables in the head
if necessary. (We are looking for a substitution that achieves a-equivalence). This is not done in
freevar_match. We may or may not want to do this in the future.

(freevar-match::case of ABS 109a)=
if (head— fields|0]— cname # body— fields|0]— cname) return false;
bindingAbss.push_ back(head);
return freevar match(head— fields[1], body— fields[1], theta, bindingAbss);

Uses freevar_match 108a.

Comment 3.2.3. These cases are identical for redex_match and freevar_match.

(freevar-match::case of APP 109b)=
if (=freevar_match(head—lc(),body—lc(),theta,bindingAbss)) return false;
return freevar_match(head—rc(), body—rc(), theta, bindingAbss);

Uses freevar_match 108a, 1c 30e, and rc 30e.

(freevar-match::case of MODAL 109¢)=
if (head—modality # body— modality) return false;
return freevar_match(head— fields|0], body— fields|0],theta, bindingAbss);

Uses freevar_match 108a.

(freevar-match::case of PROD 109d)=
unint size = head— fieldsize;
if (size # body— fieldsize) return false;

for (unint i=0; i#size; i++) {
setSelector(SILENT);
ioprint("unifying "); head— fields|i|— print();
ioprint(" and "); body— fields[i|—print(); ioprint(" ");
if (—freevar_match(head— fields|i],body— fields[d],theta,bindingAbss)){
setSelector(SILENT); ioprint(" false\n"); setSelector(SILENT);
return false;

setSelector(SILENT); ioprint(" true\n"); setSelector(SILENT);
}

return true;
Uses freevar_match 108a, ioprint 164 165, and setSelector 164 165.

3.2.2.1 Manipulating Substitutions

(pattern-match::function declarations 99a)+=
void print Theta(vector< substitution> & theta);

Defines:
printTheta, used in chunk 92a.
Uses substitution 51.
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(pattern-match::functions 99b)+=
void printTheta(vector<substitution> & theta) {
if (getSelector() = SILENT) return;
ioprint(>{?);
int size = theta.size();
if (size = 0) { ioprint("}\n"); return; }
for (int =0; i#size-1; i++) {
ioprint(’> (7);
if (thetalq].first > 5000) {
ioprint(pve); ioprint(thetald.first-5000); }
else ioprint(getString(theta[i].first));
ioprint(’/?);
thetalq].second— print(); ioprint("), ");
}
ioprint(’ (?);
if (theta|size-1].first > 5000) {
ioprint(pve); ioprint(theta[size-1].first-5000); }
else ioprint(getString(theta|size-1].first));
ioprint(’/?);
theta|size-1].second—print(); ioprint(’)?);
ioprint("F\n");
}
Defines:

printTheta, used in chunk 92a.
Uses getSelector 164 165, getString 147, ioprint 164 165, and substitution 51.

(pattern-match::function declarations 99a)+=
term * findBinding(int svname, vector<substitution> & theta);

Defines:
findBinding, used in chunk 101la.
Uses substitution 51.

(pattern-match::functions 99b)+=
term * findBinding(int svname, vector<substitution> & theta) {
int size = theta.size();
for (int =0; i#£size; i++)
if (theta[i].first = suname) return thetali|.second;
return NULL;
}
Defines:

findBinding, used in chunk 101a.
Uses substitution 51.
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3.2.2.2 File Organization

111 (terms.h 111)=
#ifndef _TERM_H
#define _TERM_H

#include <iostream>
#include <string>
#include <vector>
#include <set>
#include <utility>
#include <cassert>
#include <stdlib.h>
#include <ctype.h>
#include <math.h>
#include "io.h"
using namespace std;

#define unint unsigned int // defined in stdlib.h

struct term;
class type;

(term::definitions 38a)
(term::supporting types 38b)
typedef vector<int> occurrence;
(term::type defs 29a)

extern const string & getString(int code);
extern bool isUVar(term * t);
extern bool isUVar(int cn);

struct term {
(term bool parts 31a)
(term parts 29b)
term x next;
(term vector parts 30b)
(term::function declarations 30a)
term x clone();
void freememory();
void replace(term * t);
bool equal(term * t);
bool isFunc2Args();
bool isFunc2Args(int f);
term x spineTip();
term x spineTip(int & x);
bool isChar();
bool isString();
bool isAString();
bool isRigid();
void print();
void print Vertical(unint level);
void getFreeVars();
void unmark Validfree();
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void labelStaticBound Vars();
void labelBound(int z);
bool occursFree(int var);
bool occursFreeNaive(int var);
bool occursFreeNaive(int var, vector<int> boundv);
bool captured(vector<term x> & bvars, int & captd);
void rename(int varl, int var2);
void renameLambda Var(int varl, int var2);
void subst(vector<substitution> & subs);
void subst(substitution & sub);
void subst2(vector< substitution> & subs, vector<term x> bv,

term xx pointer);
// bool containsQuantifiers();
bool isNegation();
bool isNegationOf(term * t2);
bool isDiamond();
void stripNegations();
bool containsFreeVariable();
void collectFree Variables(set<int> & fvars);
term x normalise();
term x normalisel();
term * normalise2();
void collectFunctionNames(set<int> & x);
bool termReplace(term * s, term * r,

term x parent,int id);
bool matchReplace(term * s, term * 1,
term * parent,int id);

bool simplifyEquality(term = parent, unint id);
bool simplifyArithmetic(term * parent, unint id);
bool simplifylnequalities(term * parent, unint id);
bool simplifyMath(term = parent, unint id);
bool betaReduction(term * parent, unint id);
bool simplifylte(term x parent, unint id);
bool simplifyConjunction();
bool simplifyConjunction2(term * parent, unint id);
bool simplifyExistential(term = parent, unint id);
bool simplifyUniversal(term % parent, unint id);
bool simplifyModal Terms(term x parent, unint id);
term x findEq(term * root);
bool isEq(term  root);
bool isEq(int var);
term x replaceFEq(int var);
void collectShared Vars();
void shareLambda Vars(vector<term x> & lvars, bool use);
void shareVar(term * var, term % parent, unint id);
void shareHeadLambda Vars(vector<term x> & hlvars);
void collectFree Vars(term x bodyparent, unint id);
void collectLambda Vars(multiset<int> & ret);
bool shareFreeVar(term x v, term * parent, unint id);
bool precomputeFree Vars();
// bool simplifyWithTP();
// bool simplifyWithTP2();
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(term::memory management 39a)

extern int newPVar();

extern int newUVar();

extern term x newT2Args(kind k, const string & f);
extern term x newT2Args(kind k, int f);

#endif

Uses betaReduction 69a, captured 48b, collectFreeVariables 55a, collectFreeVars 96b, collectSharedVars 94a
containsFreeVariable 55a, equal 34b, findEq 71b, getFreeVars 45b, getString 147, isAString 33a,
isChar 33a, isDiamond 55c, isEq 72a 77b, isFunc2Args 32f, isNegation 55b, isNegationOf 56a, isString 33a
isUVar 55a, labelBound 47a, labelStaticBoundVars 46f, matchReplace 57a, newPVar 148c, newT2Args 33c,
newUVar 148c, normalise 57b, normalisel 58, normalise2 60a, occursFree 47b, occursFreeNaive 47c,
precomputeFreeVars 97c, printVertical 37a, rename 49b, renameLambdaVar 50, replace 42b, replaceEq 77a,
shareFreeVar 97a, shareHeadLambdaVars 96a, shareLambdaVars 94b, shareVar 95a, simplifyArithmetic 65
simplifyConjunction 7la, simplifyConjunction2 73, simplifyEquality 61, simplifyExistential 75a
simplifyInequalities 67, simplifyIte 69b, simplifyMath 68, simplifyModalTerms 80, simplifyUniversal 78a,
simplifyWithTP 105, simplifyWithTP2 105, spineTip 32e, stripNegations 56b, subst 52a, subst2 52b,
substitution 51, and termReplace 56c¢.

(terms.cc 113a)=
#include "terms.h"
(terms.cc::local functions 33c)
(term::function definitions 32e)

(pattern-match.h 113b)=
#ifndef _PATTERN_MATCH_H
#define _PATTERN_MATCH_H

#include "terms.h"
(pattern-match::function declarations 99a)
#endif

(pattern-match.cc 113c)=
#include <iostream>
#include <utility>
#include <vector>
#include "io.h"

#include "pattern-match.h"
#include "global.h"

(pattern-match::functions 99b)
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4.1 Parsing using Lex and Yacc

4.1.1 Scanner

115 (escher-scan.l 115)=
o
#include <iostream>
#include <string.h>
#include <stack>
#include "terms.h"
#include "unification.h"
#include "y.tab.h"
using namespace std;

char linebuf [5000] ;
int tokenpos = 0;

int import_level = O;
bool quiet;

bool interactive;

hY

(flex options 118b)

%x CMNT

hoth

\\- BEGIN CMNT;

<CMNT>. |\n ;

<CMNT>\-\} BEGIN INITIAL;

[\t 1+ { (lex:tpos 117¢) }

\-\-.* { // cout « "-\n";
(lex:tpos 117¢) }

\n. * { (lex error reporting hackery 117b) tokenpos = 0;}
LastResort { (lex:tpos 117¢) return LASTRESORT; }

Cache { (lex:tpos 117¢) return CACHE; }

Eager { (lex:tpos 117¢) return EAGER; }

Persistent { (lex:tpos 117c) return PERSISTENT; }

type { (lex:tpos 117c) return TYPE; }

prove { (lex:tpos 117c) return PROVE; }

KB { (lex:tpos 117c) return KB; }

Bool { (lex:tpos 117¢) return BOOL; }

Int { (lex:tpos 117¢) return INT; 2}

Float { (lex:tpos 117c) return FLOAT; }

Char { (lex:tpos 117c) return CHAR; }

String { (lex:tpos 117c) return STRING; }

ListString { (lex:tpos 117¢) return LISTRING; }

\-\> { (lex:tpos 117¢) return ARROW; }

import { (lex:tpos 117c) return IMPORT; }

quit { (lex:tpos 117c) return QUIT; }

VAR { (lex:tpos 117¢) return VAR; }

CONST { (lex:tpos 117¢) return CONST; }

EQUAL { (lex:tpos 117¢) return EQUAL; }

NOTEQUAL { (lex:tpos 117c) return NOTEQUAL; }

Strlist { (lex:tpos 117c) return STRLIST; }

add { (lex:tpos 117c) (lex:copy yytext 117a); return ADD;
sub { (lex:tpos 117¢) (lex:copy yytext 117a); return SUB; }
max { (lex:tpos 117¢) (lex:copy yytext 117a); return MAX; }
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min { (lex:tpos 117c) (lex:copy yytext 117a); return MIN;
mul { (lex:tpos 117¢) (lex:copy yytext 117a); return MUL; }
div { (lex:tpos 117¢) (lex:copy yytext 117a); return DIV; }
mod { (lex:tpos 117c) (lex:copy yytext 117a); return MOD; }
sin { (lex:tpos 117c) (lex:copy yytext 117a); return SIN;
cos { (lex:tpos 117c) (lex:copy yytext 117a); return COS;
sqrt { (lex:tpos 117¢) (lex:copy yytext 117a); return SQRT; }
exp { (lex:tpos 117¢) (lex:copy yytext 117a); return EXP; }
atan2 { (lex:tpos 117¢) (lex:copy yytext 117a); return ATAN2; }
if { (lex:tpos 117c) (lex:copy yytext 117a); return IF; }
then { (lex:tpos 117c) (lex:copy yytext 117a); return THEN; }
else { (lex:tpos 117c) (lex:copy yytext 117a); return ELSE; }
ite { (lex:tpos 117¢) (lex:copy yytext 117a); return ITE; }
\&\& { (lex:tpos 117¢) (lex:copy yytext 117a); return AND; 2}
NAY { (lex:tpos 117c) (lex:copy yytext 117a); return OR; }
not { (lex:tpos 117c) (lex:copy yytext 117a); return NOT; 2}
implies { (lex:tpos 117¢) (lex:copy yytext 117a); return IMPLIES; }
iff { (lex:tpos 117¢) (lex:copy yytext 117a); return IFF; }
sigma { (lex:tpos 117¢) (lex:copy yytext 117a); return SIGMA; }
pi { (lex:tpos 117c) (lex:copy yytext 117a); return PI; }
exists { (lex:tpos 117c) (lex:copy yytext 117a); return EXISTS; }
forall { (lex:tpos 117c) (lex:copy yytext 117a); return FORALL; }
box { (lex:tpos 117¢) (lex:copy yytext 117a); return BOX; }
\I\- { (lex:tpos 117¢) (lex:copy yytext 117a); return TURNSTILE; }
assign { (lex:tpos 117¢) (lex:copy yytext 117a); return ASSIGN; }
\= { (lex:tpos 117¢) (lex:copy yytext 117a); return MYEQ; }
\/\= { (lex:tpos 117c) (lex:copy yytext 117a); return MYNEQ; }
\<\= { (lex:tpos 117c) (lex:copy yytext 117a); return MYLTE; }
\< { (lex:tpos 117¢) (lex:copy yytext 117a); return MYLT; }
\>\= { (lex:tpos 117¢) (lex:copy yytext 117a); return MYGTE; }
\> { (lex:tpos 117¢c) (lex:copy yytext 117a); return MYGT; }
True { (lex:tpos 117c) (lex:copy yytext 117a); return TRUE; }
False { (lex:tpos 117c) (lex:copy yytext 117a); return FALSE; }
\# { (lex:tpos 117¢) (lex:copy yytext 117a); return CONS;}
\[\] { (lex:tpos 117¢) (lex:copy yytext 117a); return EMPTYLIST;}
-7[0-9]+ { (lex:tpos 117c) yylval.numint = atoi(yytext);

return DATA_CONSTRUCTOR_INT; 2
(lex:tpos 117c) yylval.num = atof (yytext);
return DATA_CONSTRUCTOR_FLOAT; }

-7[0-9]+\.[0-9]+

-~

N [T\ { (lex:tpos 117¢) (lex:copy yytext 117a)
return DATA_CONSTRUCTOR_CHAR; /*’x*/}
AR EAN { (lex:tpos 117¢) (lex:copy yytext 117a)

return DATA_CONSTRUCTOR_STRING; /x"*/ }
[a-zA-Z\/0-9\_\.\-I1+\.es { (lex:tpos 117¢) (lex:copy yytext 117a); return FILENAME; }
\_ { (lex:tpos 117¢) (lex:copy yytext 117a); return VARIABLE; }
[a-z] [0-9\_]* { (lex:tpos 117¢) (lex:copy yytext 117a); return VARIABLE; }
\:[a-z]+[0-9\_1* { (lex:tpos 117¢) (lex:copy yytext 117a); return VARIABLE; }
pv(elt) [0-9]* { (lex:tpos 117c) (lex:copy yytext 117a); return VARIABLE; 7}
[a-zA-Z] [0-91#\_SV { (lex:tpos 117c) (lex:copy yytext 117a); return SYN_VARIABLE; }
[a-z] [a-zA-Z0-9\-\_\"]
[A-Z] [a-zA-Z0-9\-\_\’]

)

* { (lex:tpos 117c) (lex:copy yytext 117a); return IDENTIFIER1; }
* { (lex:tpos 117c) (lex:copy yytext 117a); return IDENTIFIER2; }
{ (lex:tpos 117c) return yytext[0]; }

)

ol
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#define YY_NO_UNPUT 1 // suppose to get rid of warning message
(facilities for handling multiple input files 118a)

(lex:copy yytext 117a)=
yylval.name = new char[strlen(yytext)+1];
strcpy(yylval.name, yytext);

Comment 4.1.1. T learned this trick for achieving better error recovery from [LMB92, p. 246].
The regular expression

n.* matches a newline and the next line, which is saved in 1linebuf before being returned to the
scanner by yyless. The variable tokenpos remembers the current position on the current line.

(lex error reporting hackery 117b)=
if (!'quiet) cerr « "prompt> ";
assert(strlen(yytext+l) <= 5000);
strcpy(linebuf, yytext+l); yyless(1);

(lex:tpos 117c)=
tokenpos += yyleng;

(yacc token definitions 117d)=
%token IMPORT QUIT ARROW PROVE KB TYPE
%token EAGER CACHE LASTRESORT PERSISTENT
%token DATA VAR CONST EQUAL NOTEQUAL BOX EXISTS FORALL TURNSTILE
%token AND OR NOT IMPLIES IFF ADD SUB MAX MIN MUL DIV MOD SIN COS SQRT EXP ATAN2
%token IF THEN ELSE ITE
%token SIGMA PI MYLT MYLTE MYGT MYGTE MYEQ MYNEQ ASSIGN
%token TRUE FALSE CONS EMPTYLIST
%token BOOL INT FLOAT CHAR STRING LISTRING STRLIST
%token <name> FILENAME
%token <name> VARIABLE
%token <name> DATA_CONSTRUCTOR
%token <numint> DATA_CONSTRUCTOR_INT
%token <num> DATA_CONSTRUCTOR_FLOAT
%token <name> DATA_CONSTRUCTOR_STRING
%token <name> DATA_CONSTRUCTOR_CHAR
%token <name> SYN_VARIABLE
%token <name> IDENTIFIER1
%token <name> IDENTIFIER2

Comment 4.1.2. Escher allows nested import statements in program files. Unfortunately, we
cannot simply switch input files every time we see an import statement to read from the correct
file because flex scanners do a lot of buffering. That is to say, the next token comes from the
buffer, not the file yyin.

The solution provided by flex is a mechanism to create and switch between input buffers, and
this is what we used here. A stack of input buffers is used to handle multiply nested import
statements. Every time we see an import statement, we call switchBuffer to push the current
buffer onto stack, and then create a new buffer and switch to it. When we are done with the
current buffer, the scanner will call yywrap to delete the existing buffer and then revert to the
previous buffer stored on top of the stack.

See, for more details on flex, [Pax95].
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(facilities for handling multiple input files 118a)=
stack<YY_BUFFER_STATE> import_stack;

void switchBuffer(FILE * in) {
YY_BUFFER_STATE current = YY_CURRENT_BUFFER;
import_stack.push(current) ;
// cout « "Switching to new file.\n";
YY_BUFFER_STATE newf = yy_create_buffer(in, YY_BUF_SIZE);
yy_switch_to_buffer(newf);
import_level++;
}
int yywrap() {
import_level-;
cerr « "done "; if (import_level == 0) cerr « endl;
if (import_level == 0 && interactive) quiet = false;
if (!quiet) cerr « "prompt> ";
YY_BUFFER_STATE current = YY_CURRENT_BUFFER;
yy_delete_buffer(current);
if (import_stack.size()) {
yy_switch_to_buffer (import_stack.top());
import_stack.pop();
return O;
}
return 1;
}
int mywrap() {
if (interactive) quiet = false;
if (!'quiet) cerr « "prompt> ";
// YY_BUFFER_STATE current = YY_CURRENT_BUFFER;
// yy_delete_buffer(current);
if (import_stack.size()) {
yy_switch_to_buffer (import_stack.top());
import_stack.pop();
return O;
}
return 1;
}

Defines:
mywrap, used in chunk 119.
switchBuffer, used in chunk 120.

Comment 4.1.3. It forces input to be read one character at a time. The option yylineno allows
us to track down the line number of an offending command.

(flex options 118b)=
%option yylineno
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4.1.2 Parser
119 (escher-parser.y 119)=
hi

#include <iostream>
#include <vector>
#include <stack>

#include "global.h"
#include "io.h"

#include "terms.h"
#include "unification.h"
#include "pattern-match.h"

using

namespace std;

#define YYMAXDEPTH 50000

extern int yylex(); extern FILE * yyin;

extern bool quiet; extern bool interactive;

int mywrapQ;
int yyparse();

(parser
(parser

h}

::function declarations 120d)
::variables 120c)

Y%union { char * name; int cname;

float num;

int numint;

term * trm;

type * c_type;
condition * cond; }

(yacc token definitions 117d)

%type
%type
htype
htype
htype
htype
%o

input

program_statements
program_statement

parser

(

(parser:
(parser::
(parser:
(parser::
(

parser

hh
(parser
(escher

<trm> term_schema

<cond> sv_condition

<c_type> type

<name> dataconstructor
<cname> functionsymbol
<numint> stmt_ctrl_directive

! program_statements ;

::quit 120a)

:import 120b)

query 120e)

:type info 132)
statement schema 122a)
::term schema 125)

;:error reporting 137b)
main program 136a)

: /* empty */ | program_statements program_statement ;
import | type_info | statement_schema | query | quit ;
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Uses mywrap 118a.

Comment 4.1.4. Quiting is easy. We clean up the memory occupied by the program and then
exit.

(parser:quit 120a)=
quit : QUIT ’;’ { cout « "Quiting...\n"; cleanup(); exit(0); } ;
Uses cleanup 137c 137d.

Comment 4.1.5. We allow nested import statements. See Comment 4.1.2 on how this works.

(parser::import 120b)=
import : IMPORT FILENAME ’;’
{ if (imported.find($2) == imported.end()) {
FILE * in = fopen($2, "r");
if (1in) {
cerr <« "Error reading from " « $2 « endl; assert(false); }
quiet = true;

switchBuffer(in); cerr « " Reading " « $2 « "...";
imported.insert($2);

}

// if (lquiet) cerr « "prompt> ";

3

Uses switchBuffer 118a.

(parser::variables 120c)=
#include <set>
set<string> imported;

(parser:function declarations 120d)=
extern int switchBuffer (FILE * in);
Uses switchBuffer 118a.

Comment 4.1.6. This is where a computation starts.

(parser::query 120e)=
query : ’:’ term_schema ’;°’ { (parser::perform a computation 121a)
if (answer) answer->freememory(); }
| >:°> term_schema ’|’> CACHE ’;’ { term * oquery = $2->clone();
<parser::perform a computation 121a>
(parser::cache computed result 121b) }
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Comment 4.1.7. Given a query, we repeatedly simplify it using reduce until nothing can be
done anymore. If the end result is a data constructor, we print it. The variable tried is the total
number of redexes tried throughout the computation.

121a (parser::perform a computation 121a)=

bool program_okay = typeCheck();

type * ret = NULL;

term * answer = NULL;

if (program_okay && typecheck) ret = wellTyped($2);

if (program_okay) {
if (ret) delete_type(ret);
(parser::query::output query 121c)
$2->reduceRpt () ;
answer = $2; //$
(parser::query::output result 121d)

} else {
cerr <« " Error: Query not evaluated.\n";
if (!quiet) cerr « "prompt> ";

Comment 4.1.8. Here we form a statement from the original query and the answer obtained
and insert that into the cacheStatements vector.

121b (parser::cache computed result 121b)=
statementType * st = new statementType();
term * head = oquery;
term * body = answer;
term * p = newT2Args(F, iEqual); p->initT2Args(head, body);
st->stmt = p;
(parser::preprocess statements 124a)

term * leftmost = head->spineTip(st->numargs);
if (leftmost->isF()) {
st->anchor = leftmost->cname;
insert_ftable(leftmost->cname, st->numargs); }
cachedStatements.push_back(st);

121c (parser::query::output query 121c)=
int osel = getSelector(); setSelector (STDOUT);
ioprint(" Query: "); $2->print(); ioprintln(); /*$x*/
setSelector(osel);

121d (parser::query::output result 121d)=
// cout « "Total candidate redexes tried = " « tried « endl;
int osel2 = getSelector(); setSelector (STDOUT);
ioprint("Steps = "); ioprint(ltime);
if (optimise) { ioprint(" ("); ioprint(cltime); ioprint(" cached step(s))"); }
ioprint("\n Answer: ");
answer->print(); ioprintln(" ;");
setSelector(osel?);
// answer->freememory() ;
ltime = 0; cltime = 0;
cerr « '"prompt> ";
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Comment 4.1.9. We now move on to the parsing of Escher statements. Two different kinds of
input are supported. We can accept a vanilla Escher statement with syntactic variables in it. We
can also accept Bach input equations. System defined statements are used in Alkemy for other
purposes.

122a (parser::statement schema 122a)=
statement_schema :
term_schema MYEQ term_schema ’;°
{ (escher-parser::statement schema 122b) }
| term_schema MYEQ term_schema ’;’ stmt_ctrl_directive ’;’
{ (escher-parser::statement schema 122b)
(statement schema::control directives 124c)

}
stmt_ctrl_directive : EAGER { $$ = EAGER ; }
| LASTRESORT { $$ = LASTRESORT; }
| CACHE { $$ = CACHE; }
{ $$ = PERSISTENT; }

| PERSISTENT

>

Comment 4.1.10. In the case of Escher statements, we just put the head and the body together
and do the necessary preprocessing.

122b (escher-parser::statement schema 122b)=
statementType * st = new statementType();
term * head = $1; term * body = $3;
(parser::make sure statement head has the right form 123)
st->stmt = newT2Args(F, iEqual); st->stmt->initT2Args(head, body) ;
(parser::preprocess statements 124a)
insert_statement(st);
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Comment 4.1.11. Here, we check that

1. Every free variable appearing in the body also appears in the head. This is part of the
type-weaker condition on statements.

2. Every free variable in the head appears exactly once.

3. Every lambda variable in the head is unique. This extra condition is needed to make sure
the preprocessing code behaves alright.

123 (parser::make sure statement head has the right form 123)=
term * leftmost = head->spineTip(st->numargs); //$
assert(leftmost->isF());
// make sure all free variables in body appears in the head
// head->labelVariables(0); body->labelVariables(0);
head->getFreeVars(); body->getFreeVars();

for (int i=0; i!=body->frvarsize; i++) {
if (body->frvars[i] == -5) continue;
bool done = false;
for (int j=0; j!=$1->frvarsize; j++)
if (body->frvars[i] == head->frvars[jl) {
done = true; break; }

if ('domne) {
setSelector (STDERR) ;
cerr ¢« " **%*x Error parsing statement: ";
head->print(); cerr « " = "; body->print(); cerr « endl;

cerr « "Variable " « getString(body->frvars[i]) «
" free in body but not free in head.\n";
assert(false);
}
¥
// make sure every free variable occurs only once in the head
for (int i=0; i'=head->frvarsize; i++) {
if (head->frvars[i] == -5) continue;
if (head->frvars[i] == iWildcard) continue;
for (int j=i+1; j!'=head->frvarsize; j++)
if (head->frvars[i] == head->frvars[j]) {

setSelector (STDERR) ;
cerr « " xxx Error parsing statement: ";
head->print(); cerr « " = "; body->print(); cerr<endl;

cerr « "Variable " « head->frvars[i] «
" occurs multiple times in head.\n";
assert(false);

}

// make sure lambda variables in the head are unique
multiset<int> lvars; head->collectLambdaVars(lvars);
multiset<int>::iterator p = lvars.begin();
while (p != lvars.end()) {

if (lvars.count(*p) > 1) {

setSelector (STDERR) ;
cerr « " xxx Error parsing statement: ";
head->print(); cerr « " = "; body->print(); cerr«endl;

cerr « "Lambda variable " « getString(*p) «
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" occurs multiple times in head.\n";
assert(false);

}
ptt;
}
// everything is okay now
st->anchor = leftmost->cname;
insert_ftable(leftmost->cname, st->numargs);

Comment 4.1.12. Here we perform different kinds of preprocessing on statements talked about
in §3.1.3.1 and other places.

(parser::preprocess statements 124a)=
head->labelStaticBoundVars(); body->labelStaticBoundVars();
st->stmt->collectSharedVars() ;
head->collectFreeVars(st->stmt, 1);
head->precomputeFreeVars() ;

Comment 4.1.13. We have some control directives that can be used to control the evaluation
order of Bach.

We provide a mechanism to specify that certain statements should be evaluated in an eager
fashion. The default Escher evaluation strategy is a lazy one: the leftmost outermost redex is
picked at any step. The eager strategy stipulates that the leftmost innermost redex be picked at
any step. Eager statements are processed in the same way as normal statements. We just set a tag
to say the statement is eager. The try_match_n_reduce function will take this tag into account
when doing computations.

Some statements in the booleans module increase the length of the resulting term. (This is
usually the case for user-defined statements, but statements in the booleans module, in most cases,
should not be like that.) We provide here a mechanism to delay the application of such statements
as a last resort.

We provide a control direction to specify that computations involving certain functions should
be cached to improve efficiency.

We need persistent objects in database applications. This is done by labelling certain state-
ments as persistent. The RHS of a persistent statement can change during run-time.

(escher-parser::statement schema cache 124b)=
(escher-parser::statement schema 122b)
cacheFuncs.insert (leftmost->cname);

(statement schema::control directives 124c)=
if ($5 == EAGER) st->eager = true;
if ($5 == LASTRESORT) st->lastresort = true;
if ($5 == PERSISTENT) st->persistent = true;
if ($5 == CACHE) cacheFuncs.insert(leftmost->cname);

Comment 4.1.14. In addition to side conditions on syntactic variables, we also have side con-
ditions on the type of subterms residing in the head of statements. This mechanism is designed
to allow us to overload a function with definitions that are type dependent. For example, suppose
we want to write a function card : (a— > Bool)— > Nat to compute the cardinality of a given
set. Depending on the actual type of a, we may have different definitions. For example, we may
have

(card Az.v) = (card (enumerate2D Az.v)); if Az.v: (a x b) — 2
(card Az.v) = (card (enumerate3D Az.v)); if Az.w: (axbxc)— 2
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if we have different ways of enumerating sets of tuples.
Here, we just add the type condition to the statement. This will be checked during pattern
matching; see Comment 3.1.71.

Comment 4.1.15. We next look at term schemas.

125 (parser::term schema 125)=
term_schema : SYN_VARIABLE { $$ = new_term(SV, insert_symbol($1)); }
| SYN_VARIABLE sv_condition
{ $%$=new_term(SV, insert_symbol($1)); $$->cond = $2;3}
| VARIABLE { if ($1[0] == °_?)
$$ = new_term(V, iWildcard);

DATA_CONSTRUCTOR_INT { $$ = new_term_int($1); }
DATA_CONSTRUCTOR_FLOAT { $$ = new_term_float($1); }
DATA_CONSTRUCTOR_CHAR
{ int code = insert_symbol($1); $$ = new_term(D, code); }
(term schema::strings 127a)
IDENTIFIERLT { $$ = new_term(F, insert_symbol($1)); }
IDENTIFIER2 { $$ = new_term(D, insert_symbol($1)); }
’\\’ VARIABLE ’.’ term_schema
{ $$ = new_term(ABS);
// $$->1c = new_term(V,insert_symbol($2));
// $$->rc = $4;

else $$ = new_term(V, insert_symbol($1)); }
| SIGMA { $$ = new_term(F, iSigma); }
| PI { $$ = new_term(F, iPi); }
| AND { $$ = new_term(F, iAnd); }
| OR { $$ = new_term(F, iOr); }
| NOT { $$ = new_term(F, iNot); }
| IMPLIES { $$ = new_term(F, iImplies); }
| ITE { $$ = new_term(F, ilte); }
| IFF { $$ = new_term(F, iIff); }
| ADD { $$ = new_term(F, iAdd); }
| SUB { $$ = new_term(F, iSub); 1}
| MAX { $$ = new_term(F, iMax); }
| MIN { $$ = new_term(F, iMin); }
| MUL { $$ = new_term(F, iMul); }
| DIV { $$ = new_term(F, iDiv); }
| MOD { $$ = new_term(F, iMod); 7}
| SIN { $$ = new_term(F, iSin); }
| cos { $$ = new_term(F, iCos); }
| SQRT { $$ = new_term(F, iSqrt); }
| EXP { $$ = new_term(F, iExp); }
| ATAN2 { $$ = new_term(F, iAtan2); 1}
| MYLT { $$ = new_term(F, ilLT); }
| MYLTE { $$ = new_term(F, iLTE); }
| MYGT { $$ = new_term(F, iGT); }
| MYGTE { $$ = new_term(F, iGTE); }
| MYEQ { $$ = new_term(F, iEqual); }
| MYNEQ { $% = new_term(F, iNEqual); }
| ASSIGN { $$ = new_term(F, iAssign); }
| TRUE { $$ = new_term(D, iTrue); }
| FALSE { $$ = new_term(D, iFalse); }
| CONS { $$ = new_term(D, iHash); }
| EMPTYLIST { $$ = new_term(D, iEmptyList); }
|
|
|
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H

$$->insert (new_term(V,insert_symbol($2)));
$$->insert ($4) ;
}
>’\\’> SYN_VARIABLE ’.’ term_schema
{ $$ = new_term(ABS);
// $%$->1c = new_term(SV,insert_symbol($2));
// $$->rc = $4;
$$->insert (new_term(SV,insert_symbol($2)));
$$->insert ($4) ;
}
(term schema::if-then-else statements 127b)
(term schema::existential statements 128a)
(term schema::universal statements 128b)
BOX DATA_CONSTRUCTOR_INT term_schema
{ $$ = new_term(MODAL); $3$->modality = $2;
/* $$->1c = $3; */ $$->insert($3); }
’(’ term_schema term_schema ’)°’
{ $$ = new_term(APP);
// $$->1lc = $2; $$->rc = $3;
$$->insert ($2); $$->insert($3);
}
(term schema::syntactic sugar 129a)
(2 ) { $$ = new_term(PROD); }
(term schema::products 129c)
(term schema::sets 130)
(term schema::lists 131)

(parser::term schemas 129b)
(parser::term schema products 129d)
(parser::sv condition 128c)
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Comment 4.1.16. We have two kinds of strings: the first kind atomic; the second, composite.
An atomic string is a single data constructor; just like characters, one can only define equality

function on atomic strings, nothing else.

To define functions like substring that access the individual characters of a string, we need to
represent a string as a composite object. A natural thing to do here is to represent a string as a
list of characters. An atomic string is written "This is a string". A composite string is written

StrList "This is a string".

(term schema::strings 127a)=
DATA_CONSTRUCTOR_STRING
{ int code = insert_symbol($1); strings.insert(code);
$$ = new_term(D, code); }
| STRLIST DATA_CONSTRUCTOR_STRING
{ string x($2); int size = x.size();
term * elist = new_term(D, iEmptyList);
for (int i=size-2; i!=0; i-) {
term * temp = newT2Args(D, iHash);
string character("’"); character += x[i]; character += "’";
int code = insert_symbol(character);
temp->initT2Args (new_term(D, code), elist);
elist = temp;
}
$3 = elist; /x$x/ }

Comment 4.1.17. We provide syntactic sugar for writing if-then-else statements here.

function have the following signature:
if —then —else: 2 X a X a — a.

Note that the domain is a tuple — this function should not be written in curried form.

(term schema::if-then-else statements 127b)=

IF term_schema THEN term_schema ELSE term_schema

{ $$ = new_term(APP);
// $$->1c = new_term(F, ilte);
$$->insert (new_term(F, ilte));
term * temp = new_term(PROD);
/* temp->tuple = $2;
temp->tuple->next = $4;
temp->tuple->next->next = $6;
temp->tuple->next->next->next = NULL; */
temp->insert ($2); temp->insert($4); temp->insert($6);
// $$->rc = temp;
$$->insert (temp) ;

The
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Comment 4.1.18. We provide syntactic sugars for writing existentially and universally quantified
statements in a natural way.

128a (term schema::existential statements 128a)=
’\\’ EXISTS VARIABLE ’.’ term_schema
{ $$ = new_term(APP);

// $$->1lc = new_term(F, iSigma);
$$->insert (new_term(F, iSigma));
term * abs = new_term(ABS);
// abs->1lc = new_term(V, insert_symbol($3)); abs->rc = $5;
abs->insert (new_term(V, insert_symbol($3))); abs->insert($5);
// $$->rc = abs;
$$->insert (abs) ;

128b (term schema::universal statements 128b)=
>’\\’ FORALL VARIABLE ’.’ term_schema
{ $$ = new_term(APP);
// $$->1lc = new_term(F, iPi);
$$->insert (new_term(F, iPi));
term * abs = new_term(ABS);
// abs->1lc = new_term(V, insert_symbol($3)); abs->rc = $5;
abs->insert (new_term(V, insert_symbol($3))); abs->insert($5);
// $$->rc = abs;
$$->insert (abs) ;

Comment 4.1.19. There is a small language for imposing side conditions on syntactical variables.
See Comment 2.2.25.

128¢ (parser::sv condition 128c)=
sv_condition : ’/’ VAR °’/’ { $$ = new condition; $$->tag = CVAR; }
| >/> CONST °/> { $$ = new condition; $$->tag = CCONST; }
| >/> EQUAL ’,’ SYN_VARIABLE °’/’
{ $$ = new condition; $$->tag = CEQUAL;
$$->svname = insert_symbol($4); }
| »/° NOTEQUAL °,° SYN_VARIABLE ’/?
{ $$ = new condition; $$->tag = CNOTEQUAL;
$$->svname = insert_symbol($4); }

Comment 4.1.20. A function applied to multiple arguments is painful to write. Here we
introduce a syntactic sugar to allow users to write terms of the form (f t;...%,) to mean
(- (f t1) -+ tn). The following variable is needed to remember terms.

128d (parser::variables 120c)+=
vector<term *> temp_fields;
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129a (term schema::syntactic sugar 129a)=
>(’ term_schema term_schema term_schemas ’)°
{ $$ = new_term(APP);
// $%->1c = $2; $$->rc = $3;
$$->insert ($2); $$->insert($3);

int size = temp_fields.size(); int psize = 0;
while (temp_fields[size-1-psize] != NULL) psize++;

term * temp;

for (int i=size-psize; il!=size; i++) {
temp = new_term(APP);
// temp->lc = $$; temp->rc = temp_fields[i];
temp->insert ($$) ;
temp->insert(temp_fields[i]);

$$ = temp;
}
while (psize+1) { temp_fields.pop_back(); psize-; }
}
129b (parser::term schemas 129b)=

term_schemas : term_schema
{ temp_fields.push_back(NULL); // start a new mult app
temp_fields.push_back($1); }
| term_schemas term_schema
{ temp_fields.push_back($2); 2}

Comment 4.1.21. Products are handled in about the same way, except that we do not have to
construct application nodes.

129¢ (term schema::products 129¢)=
>(’ term_schemas_product )’
{ $$ = new_term(PROD);
int size = temp_fields.size(); int psize = 0;
while (temp_fields[size-1-psize] != NULL) psize++;

for (int i=size-psize; il!=size; i++) {
$$->insert (temp_fields[i]);
}
while (psize+1) { temp_fields.pop_back(); psize-; }

129d (parser::term schema products 129d)=
term_schemas_product : term_schema
{ temp_fields.push_back(NULL); // start a new product
temp_fields.push_back($1); }
| term_schemas_product ’,’ term_schema
{ temp_fields.push_back($3); }

Comment 4.1.22. We also provide syntactic sugar for extensional sets.
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130 (term schema::sets 130)=
) { ’ } )
{ $$ = new_term(ABS);
// $$->1c = new_term(V, newPVar());

// $$->rc = new_term(D, iFalse);
$$->insert (new_term(V, newPVar()));
$$->insert (new_term(D, iFalse));
}
| °{’ term_schemas_product ’}’
{ int pv = newPVar();
$$ = new_term(ABS); $$->insert(new_term(V, pv));

term * arg2 = new_term(D, iFalse);

int i = temp_fields.size()-1;

while (temp_fields[i] != NULL) {
term * ite = new_term(APP);
ite->insert(new_term(F, ilte));
ite->insert (new_term(PROD)) ;

term * eq = newT2Args(F, iEqual);
eq->initT2Args (new_term(V, pv), temp_fields[i]);

ite->fields[1]->insert(eq);
ite->fields[1]->insert(new_term(D, iTrue));
ite->fields[1]->insert(arg2);

arg2 = ite;
i-;

}

$$->insert(arg2); // $

// setSelector (STDOUT); $$->print(); setSelector (SILENT);

int size = temp_fields.size(); int psize = 0;
while (temp_fields[size-1-psize] != NULL) psize++;
while (psize+1) { temp_fields.pop_back(); psize-; }
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Comment 4.1.23. In the good tradition of functional programmingm we provide syntactic sugar
for lists as well.

(term schema::lists 131)=
01 {3

| °[’ term_schemas_product ’]’

{

int tsize = temp_fields.size();
term * tail = newT2Args(D, iHash);
tail->initT2Args (temp_fields[tsize-1], new_term(D, iEmptyList));
int i = tsize - 2;
while (temp_fields[i] !'= NULL) {
term * current = newT2Args(D, iHash);
current->initT2Args (temp_fields[i], tail);
tail = current;
i-;
}
$$ = tail;
int size = temp_fields.size(); int psize = 0;
while (temp_fields[size-1-psize] != NULL) psize++;
while (psize+1) { temp_fields.pop_back(); psize-; }
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Comment 4.1.24. We need to declare the signature of every constant we use. This information
is need for proper type checking of the program.

132 (parser::type info 132)=
type_info : functionsymbol ’:’ type ’;’ { insert_constant($1, $3); }
| constructordecl

| syndecl

>

functionsymbol : IDENTIFIER1 { $$ = insert_symbol($1); }

| SIGMA { $$ = iSigma; }
| PI { $$ = iPi; }

| AND { $$ = iAnd; }

| OR { $$ = i0r; }

| NOT { $$ = iNot; %

| IMPLIES { $$ = iImplies; }
| ITE { $$ = ilte; }

| IFF { $$ = iIff; }

| ADD { $$ = iAdd; }

| SUB { $$ = iSub;

| MAX { $$ = iMax; }

| MIN { $$ = iMin; }

| MUL { $$ = iMul; }

| DIV { $$ = iDiv; }

| MOD { $$ = iMod; }

| MYLT { $$ = iLT; }

| MYLTE { $$ = iLTE; }

| MYGT { $$ = iGT; }

| MYGTE { $$ = iGTE; }

| MYEQ { $$ = iEqual; }
| MYNEQ { $$ = iNEqual; 3}
| ASSIGN { $$ = iAssign; }
| TRUE { $$ = iTrue; 2}

| FALSE { $$ = iFalse; }
| CONS { $$ = iHash; 1}

| EMPTYLIST { $$ = iEmptyList; }

H
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Comment 4.1.25. A collection of data constructors with a common signature can be declared by
listing them followed by their common signature. We need to insert the signature as a user-defined
type here so that we can recognise it when we see it again later. Each data constructor together
with its signature is recorded for later type checking use as well.

(parser::type info 132)+=
constructordecl : dataconstructors ’:’ type ’;’
{ string tname($3->getName());
type * t = new type_udefined(tname, vec_constants);
if ($3->isUdefined())
insert_type(tname, UDEFINED, t);
insert_constant (insert_symbol(vec_constants[0]), $3);
for (unint i=1; i'!'=vec_constants.size(); i++)
insert_constant (insert_symbol (vec_constants[i]),
$3->clone());
vec_constants.clear();
// if (!'quiet) cerr « "prompt> ";

dataconstructors : dataconstructor { vec_constants.push_back($1); }
| dataconstructors ’,’ dataconstructor
{ vec_constants.push_back($3); }
dataconstructor : IDENTIFIER2 { $$ = $1; }
| DATA_CONSTRUCTOR { $$ = $1; }

>

Comment 4.1.26. We record the list of data constructors in this temporary vector.

(parser::variables 120c)+=
vector<string> vec_constants;

(parser::type info 132)+=
syndecl : TYPE IDENTIFIER2 MYEQ type ’;’
{ string t($2); insert_type(t,SYNONYM,$4); }
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Comment 4.1.27. We now give the grammar for types. The -> function-forming operator is
right associative; the * product-forming operator is left associative.

There are six system-defined types: Bool, Int, Float, Char, String and ListString. The
first five are atomic types. The type ListString is translated into (List Char) by the system.

(parser::type info 132)+=
type : VARIABLE { string tname($1); $$ = new type_parameter(tname);
IDENTIFIER1 { string tname($1); $$ = new type_parameter(tname); }
BOOL { $$ = new type("Bool"); }
INT { $$ = new type("Int"); }
FLOAT { $$ = new type("Float"); 1}
CHAR { $$ = new type("Char"); }
STRING { $$ = new type("String"); }
LISTRING { $$ = new type_alg("List"); $$->addAlpha(new type("Char")); }
IDENTIFIER2
{ string tname($1);
pair<int,type *> p = get_type(tname);
if (p.second == NULL) $$ = new type_udefined(tname);
else { if (p.first == UDEFINED) $$ = p.second->clone();
else $$ = new type_synonym(tname, p.second->clone()); }

}
| >(> IDENTIFIER2 types ’)’
{ string tname($2);
type_tuple * rem = dcast<type_tuple *>(tempTuples.top());
tempTuples.pop();
$$ = new type_alg(tname, rem);
delete_type(rem);
}
| >’ products )’ { $$ = tempTuples.top(); tempTuples.pop(); }
| type ARROW type { $$ = new type_abs($1, $3); }
| >C type ?)’ { $$ = $2; }

products : products ’*’ type { tempTuples.top()->addAlpha($3); }
| type ’*’ type { tempTuples.push(new type_tuple);
tempTuples.top()->addAlpha($1);
tempTuples.top()->addAlpha($3); 7
types : type
{ tempTuples.push(new type_tuple); tempTuples.top()->addAlpha($1); }
| types type
{ tempTuples.top()->addAlpha($2); }

>

(parser::variables 120c)+=
stack<type *> tempTuples;

(yacc token definitions 117d)+=
%right ARROW
%left ’x’

Comment 4.1.28. We may want to use the data statement of Haskell for declaring data con-
structors in the future. There are some issues that need to be resolved first, however.



135

4.1. PARSING USING LEX AND YACC 135

An algebraic data type declaration in Haskell does not end with a delimiter. That is a bit
strange because I need to put a delimiter (a semi-colon) to make the grammar unambiguous.
The problem is related to the limitted lookahead mechanism of Yacc. Consider the following two
statements.

data List a = Nillist | Cons a (List a)
fx=2%x

Yacc cannot tell whether f is a parameter for Cons or the start of another statement. It cannot
know this until it sees the = sign two tokens down the track.
The Haskell 98 report [Pey02] gives the following grammar for constructors:

constr — con [!|atype; . .. [ atype.

It is not clear to me what [!] means here. Maybe that holds the key to proper parsing without the
need for a delimiter.

(parser::type info::unused 135)=
algebraic_type : "data" IDENTIFIER2 parameters MYEQ data_constructors ;

parameters : /* nothing */ | parameters IDENTIFIER1 ;
data_constructors : data_constructor

| data_constructor ’|’ data_constructors ;
data_constructor : IDENTIFIER2 brtypes ;

brtypes : /* nothing */ | brtypes brtype ;

brtype : IDENTIFIER1 | IDENTIFIER2 | ’>(’ IDENTIFIER2 types ’)’ | >(’ type ’)’ ;
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4.1.3 Escher Main Program
136a (escher main program 136a)=
#ifndef __APPLE__
#ifndef __sun
#include <getopt.h>
#endif
#endif
#include <unistd.h>
#include <signal.h>
static void handle_signal(int sig) {
cout « "Interrupted....\n";
if (interrupted) { cleanup(); exit(1); }
interrupted = true;
}
int main(int argc, char ** argv) {
interactive = false; quiet = true;
char c;
while ((c = getopt(argc, argv, "vitobds")) != EOF) {
switch (c) {
case ’v’: verbose++; break;
case ’i’: interactive = true; break;
case ’t’: typecheck = false; break;
case ’0’: optimise = true; break;
case ’b’: backchain = true; break;
case ’d’: outermost = true; break;
case ’s’: stepByStep = true; break;
}
}
if (verbose) setSelector(STDOUT); else setSelector (SILENT);
makeHeap () ;
initFuncTable();
initialise_constants();
signal (SIGINT, handle_signal);
logcache = fopen("log.cache", "r+"); assert(logcache);
if (interactive) cerr « "prompt> ";
do { yyparse(); } while (!feof(yyin));
fclose(logcache);
cleanupQ);
return O;
}
Uses cleanup 137c 137d.
Comment 4.1.29. Error reporting is not quite right yet. The line number reported is wrong

because of nested imports.
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(parser::variables 120c)+=
extern int yylineno; extern char * yytext; extern char linebuf [500];
extern int tokenpos;

(parser:function declarations 120d)+=
void yyerror(const char * s);

(parser::error reporting 137b)=
void yyerror(const char * s) {
cerr « yylineno « ": " « s ¢« " at " « yytext « " in this line\n";
cerr « linebuf « endl;
for (int i=0; il!=tokenpos-1; i++) cerr « " ";
cerr « "~" « endl;
if (!quiet) cerr « "prompt> ";

Comment 4.1.30. This function frees the memory held by the program modules.

(parser:function declarations 120d)+=
void cleanup();

Defines:
cleanup, used in chunks 120a and 136a

(escher main program 136a)+=
void cleanup() {
cleanup_statements(); cleanup_formulas();
cleanup_constants(); cleanup_synonyms();
mem_report () ;
}

Defines:
cleanup, used in chunks 120a and 136a
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Global Data Structures

138 (global.h 138)=
#ifndef _ESCHER_GLOBAL_H_
#define _ESCHER_GLOBAL_H_

#include <algorithm>
#include <vector>
#include <string>
#include <set>
#include <math.h>
#include <stdlib.h>
#include "terms.h"
#include "types.h"
#include "unification.h"
using namespace std;

(global:data types 139a)
(global:external variables 143c)
(global:external functions 148b)

// extern vector<vector<term type> > stat term _types;
extern set<int> cacheFuncs;

extern set<int> strings;

extern const string pve;

(global symbol constants 148a)

#define UDEFINED O
#define SYNONYM 1

#endif
Uses term_type 17b.

138
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Comment 5.0.31. The variable 1time records the total number of computation steps taken to
simplify the query. The variable cltime records the total number of steps computed using cached
information. Statements in the input Escher program are stored in a vector. Each statement is
stored in a structure called statementType. The fields numargs and anchor are used to pick out
unsuitable statements during pattern matching.

139a (global:data types 139a)=
// these are the escher statements
struct statementType {
vector<int> modalContext; // this is used in Bach only
vector<int> quantified Vars; // this is used in Bach only
term x stmt;
int numargs;
int anchor;
bool typechecked;
bool lastresort;
bool eager;
bool persistent,
bool noredexz;
bool collectstats; int usestats;
statementType x next;
statement Type() {
anchor = -5; typechecked = false; lastresort = false;
eager = false; persistent = false; noredexr = false;
collectstats = false; usestats = 0;
next = NULL;
}
void freememory() { stmt— freememory(); }
void print() { stmt—print(); ioprintin(); if (next) next—print(); }
¥
extern vector<statementType x> grouped_ statements;
extern vector<statementType x> statements;
extern vector<statementType x> cachedStatements;
Uses ioprintln 164 165.

139b (global:data types 139a)+=

struct formulaType {
term * fml;
bool globalass;
bool typechecked;
formulaType() { globalass = false; typechecked = false; }
void freememory() { fml— freememory(); }

¥

extern vector<formulaType> formulas;
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Comment 5.0.32. The following is the data structure for storing edits.

(global:data types 139a)+=
struct BN _node {
int vname; term x density; BN _node x next,
BN _node() { density = NULL; next = NULL; }
BN _node x clone() { (BN node:clone 141c) }
void freememory() {
if (density) density— freememory();
if (next) next— freememory(); }
void print() { (BN node:print 141a) }
void subst(vector<substitution> & theta) {
density— subst(theta); if (next) next— subst(theta); }
};
Defines:

BN_node, used in chunks 140 and 141c.
Uses subst 52a and substitution 51.

(global:data types 139a)+=

struct editType {
term * head;
term * body;
type * htype;
string htype name;
BN _node % bnodes;
editType * next;
editType() { head = NULL; body = NULL; bnodes = NULL; next = NULL; }
editType = clone() { (editType:clone 141d) }
void freememory() { (editType:freememory 141e) }
void subst(vector<substitution> & theta) { (editType:subst 140c) }
void print() { (editType:print 141b) }

|8

extern vector<editType x> edits;

Defines:
editType, used in chunks 141-43.
Uses BN_node 140a, subst 52a, and substitution 51.

Comment 5.0.33. We do the appropriate term substitutions on the parts of the conditional edit,
taking care that the domain of the input substitution does not overlap the variables defined in the
bayes net.

(editType:subst 140c)=
// make sure theta does not bound variables in bnodes
for (unint i=0; i#theta.size(); i++) {
BN _node x pt = bnodes;
while (ptANULL) { assert(thetald.first # pt—vname); pt = pt—next; }
}
// do the substitution
body— subst(theta);
if (bnodes) bnodes— subst(theta);
if (next) next— subst(theta);
Uses BN_node 140a, subst 52a, and substitution 51.

Comment 5.0.34. Following are print routines for the two data structures above.
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(BN node:print 141a)=
ioprint(getString(vname)); toprint(" ~ "); density— print();
if (next # NULL) { ioprint(", "); next—print(); }

Uses getString 147 and ioprint 164 165.

(editType:print 141b)=
head—print(); ioprint(™ ~> "); body—print();
if (bnodes # NULL) { ioprint(" ["); bnodes—print(); ioprint(" 1"); }
ioprint(" of type "); ioprint(htype— getName()); ioprint("\n");
if (next) next— print();
Uses ioprint 164 165.

(BN node:clone 141c)=
BN _node x ret = new BN_node;
ret—uvname = vname; ret—density = density— clone();
if (next) ret—next = next— clone();
return ret;
Uses BN_node 140a.

Comment 5.0.35. In cloning an editType, we always have to work out the free variables because
this calculation is relied upon by the pattern-matching routine.

(editType:clone 141d)=
editType x ret = new edit Type;
ret—head = head— clone(); ret—body = body— clone();
ret—head— labelStaticBound Vars(); ret— body— labelStaticBound Vars();
ret— htype = htype— clone();
if (bnodes) ret—bnodes = bnodes— clone();
if (neat) ret—next = next—clone();
return ret;
Uses editType 140b and labelStaticBoundVars 46f.

(editType:freememory 141e)=
if (head) head— freememory();
if (body) body—s freememory();
if (htype) delete type(htype);
if (bnodes) bnodes— freememory();
if (next) next— freememory();
Uses delete_type 10a 10b.
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Comment 5.0.36. This is a data structure for storing conditional edit grammars.

142 (global:data types 139a)+=
struct CEG _node {

term * cond,

editType * editg;

CEG_node x lt, * rt,

CEG_node() { cond = NULL; editg = NULL; [t = NULL; rt = NULL; }

CEG_node * clone() {
CEG_node * ret = new CEG_ node;
if (cond # NULL) ret—cond = cond— clone();
if (editg # NULL) ret—editg = editg— clone();
if (It # NULL) { ret—lt = lt—clone(); ret—rt = rt—clone();}
return ret;

void freememory() {
if (cond) cond— freememory();

if (editg) editg— freememory();
if (it) lt— freememory();
if (rt) rt— freememory();

void print() {

setSelector(STDERR);

if (cond) {
ioprint("if "); cond—print(); ioprint(" then \n");
lt—print(); toprint("\n");
ioprint("else\n");
rt—print(); ioprint("\n");

} else editg—print();

¥
extern CEG node * condEditG,
extern CEG_node x instEditG,
Uses editType 140b, ioprint 164 165, and setSelector 164 165.
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(global.cc 143a)=
#include "global.h"
#include <stdlib.h>
#include <cassert>
using namespace std;

vector< statementType x> grouped_ statements;
vector<statementType x> statements;

// vector<vector<term type> > stat term types;
vector<formulaType> formulas;

vector<statementType x> cachedStatements;

vector<editType x> edits;

CEG_node * condEditG = NULL, * instEditG = NULL;
set<int> cacheFuncs;

set<int> strings; // used to record strings in Bach programs

(run-time options 143b)
(string constants 144a)

(symbols and their integer representations 145)
(statements and type checking 149a)
(constants and their signatures 151)
(function symbol table 154a)
(nonrigid constants 156c¢)

(type name to type objects mapping 157a)
(statements insertion and printing 158a)

(misc functions 159a)

Uses editType 140b and term_type 17b.

Comment 5.0.37. These are variables that record the run-time options specified by the user.

(run-time options 143b)=
int ltime = 0; int cltime = 0;
int verbose = 0; bool typecheck = true; bool optimise = false;
bool backchain = false; bool outermost = false; bool externallO = false;
FILE % logcache = NULL;
bool interrupted = false;
bool stepByStep = false;
vector<int> queryModalContext;

(global:external variables 143c)=
extern int ltime; extern int cltime;
/* options */
extern int verbose; extern bool typecheck;
extern bool optimise; extern bool backchain; extern bool outermost;
extern bool externallO;
extern vector<int> queryModalContext;

extern bool interrupted,
extern bool stepByStep;
/x log files */

extern FILE x logcache;
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Comment 5.0.38. Strings for the type system.

(string constants 144a)=
const string underscore = "_";
const string alpha = "alpha";
const string Parameter = "Parameter";
const string Tuple = "Tuple";
const string Arrow = "Arrow";
const string gBool = "Bool", gChar = "Char", ¢gString = "String";
const string gInt = "Int", gFloat = "Float";
const string pve = "pve";

Comment 5.0.39. Output strings for system-level equational simplification routines.

(string constants 144a)+=

const string eqgsimpl = "Equalities simplification\n";

const string andsimpl = "And rule simplification\n";

const string and2simpl = "And2 rule simplification\n";

const string ineqsimpl = "Inequalities simplification\n";
const string arsimpl = "Arithmetic simplification\n";

const string exsimpl = "Existential rule simplification\n";
const string uvsimpl = "Universal rule simplification\n";
const string betasimpl = "Beta reduction\n";

const string mathsimpl = "Math library function call\n";
const string itesimpl = "If-then-else rule simplification\n";

const string modalsimpl = "Modal term simplification\n";

(global:external variables 143c)+=
extern const string eqsimpl, andsimpl, and2simpl, ineqstmpl, arsimpl,
exsimpl, uvsimpl, betasimpl, mathsimpl, itesimpl, modalsimpl,

Comment 5.0.40. Output strings for tableaux rules in the theorem prover.

(string constants 144a)+=
const string substitutionRuleld = "=",
const string negationRuleld = "~~";

const string conjunctionRuleld = "&";
const string disjunctionRuleld = "v";
const string reflexiveRuleld = "Id";

const string existentialRuleld = "E";

const string uniwersalRuleld = "U";

const string uniersalSPImpliesRuleld = "USI";
const string bachRuleld = "Bc";

const string closureRuleld = "C";
const string uclosureRuleld = "UI";
const string diamondRuleld = "<>";

const string boxRuleld = "[1";
const string kRuleld = "K";

(global:external variables 143c)+=
extern const string substitutionRuleld, negationRuleld, conjunctionRuleld,
disjunctionRuleld, reflexiveRuleld, kRuleld,
existential Ruleld, universalRuleld, universalSPImpliesRuleld,
bachRuleld, closureRuleld, uclosureRuleld, diamondRuleld, boxRuleld,
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Comment 5.0.41. For efficiency reasons, we do not want to deal with the string representations
of symbols in the system. Each symbol is mapped to an integer, and the mappings are recorded
here.

(symbols and their integer representations 145)=
const int iNot = 1001; const string gNot = "not";
const int {And = iNot + 1; const string gAnd = "&&";
const int :Or = iAnd + 1;  const string gOr = "|[|";
const int i(Implies = iOr + 1; const string glmplies = "implies";
const int iIff = ilmplies +1; const string glff = "iff";
const int iPi = ilff + 1;  const string gPi = "pi";
const int iSigma = iPi + 1; const string gSigma = "sigma";
const int (EFqual = iSigma +1; const string gEqual = "=",
const int ilte = iEqual + 1; const string glte = "ite";
const int iTrue = ilte + 1; const string gTrue = "True";
const int iFalse = iTrue + 1; const string gFalse = "False";
const int 1Hash = iFalse + 1; const string gHash = "#";
const int (EmptyList = iHash + 1; comst string gEmptyList = "[1";
const int ilnfinity = iEmptyList + 1; const string gInfinity = "Infinity";
const int iAdd = ilnfinity + 1; const string gAdd = "add";
const int iSub = iAdd + 1; const string gSub = "sub";
const int iMax = iSub + 1; const string gMaz = "max";

const int :Min = iMaz + 1; const string gMin = "min";
const int iMul = iMin + 1; const string gMul = "mul";
const int iDiv = iMul + 1; const string gDiv = "div";

const int iMod = iDiv + 1; const string gMod = "mod";

const int iAtan2 = iMod + 1; const string gAtan2 = "atan2";
const int (LT = iAtan2 + 1; const string gLT = "<";

const int iLTE = LT + 1;  const string gLTE = "<=",

const int iGT = iLTE + 1;  const string gGT = ">";

const int i«GTE = iGT + 1;  const string gGTE = ">=",;

const int iNEqual = iGTE +1; const string gNEqual = "/=";
const int iAssign = iNFqual+1; const string gAssign = ":=";
const int iTpHelp = iAssign+1; const string gTpHelp = "tpHelp";
const int iTpTag = iTpHelp +1; const string gTpTag = "TpTag",;
const int iSucceeded = iTpTag+1; const string gSucceeded = "Succeeded";
const int iFailed = iSucceeded+1; const string gFailed = "Failed";

const int :DontKnow = iFailed+1; const string gDontKnow = "DontKnow";
const int iSin = iDontKnow+1; const string gSin = "sin";
const int (Cos = iSin + 1; const string gCos = "cos",

const int iSqrt = iCos + 1; const string gSqrt = "sqrt";
const int i(Ezp = iSqrt + 1; const string gExp = "exp";

const int iUniform = iFzp + 1; const string gUniform = "uniform";
const int iCategorical = iUniform+1; const string gCategorical = "categorical";
const int iGaussian = iCategorical + 1; const string gGaussian = "gaussian";
const int (Point = iGaussian + 1; const string gPoint = "point";
const int :DGaussian = iPoint + 1; const string ¢DGaussian = "dgaussian";
const int iWildcard = iDGaussian + 1; const string gWildcard = "_";

Defines:

iAdd, used in chunks 65, 66, 147, 148a, 152a, and 154c.

iAnd, used in chunks 58, 59b, 63a, 64a, 71b, 74, 76¢c, 77a, 79b, 90, 147, and 148a.
iAssign, used in chunks 93b, 147, 148a, 152c, and 154c.

iAtan2, used in chunks 65, 147, 148a, 152a, and 154c.

iCategorical, used in chunks 147, 148a, 151, and 163a.

iCos, used in chunks 68, 147, 148a, 152a, and 154c.

iDGaussian, used in chunks 147, 148a, 151, and 163a.
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iDiv, used in chunks 66, 147, 148a, 152a, and 154c.

iDontKnow, used in chunks 107a, 147, and 148a.

iEmptyList, used in chunks 36, 62d, 147, 148a, 151, 159c, and 160.
iEqual, used in chunks 63a, 64a, 69b, 72a, 77b, 89b, 90, 147, 148a, 151, and 154c.
iExp, used in chunks 68, 147, 148a, 152a, and 154c.

iFailed, used in chunks 147, 148a, and 152c.

iFalse, used in chunks 56a, 58, 62d, 64a, 67, 75c, 78c, 147, 148a, and 151.
iGT, used in chunks 67, 147, 148a, 152b, and 154c.

iGTE, used in chunks 67, 147, 148a, 152b, and 154c.

iGaussian, used in chunks 147, 148a, 151, and 163a.

iHash, used in chunks 33a, 36b, 147, 148a, 151, 159¢, and 160.
iIff, used in chunks 58, 147, and 148a.

iImplies, used in chunks 58, 78b, 147, and 148a.

iInfinity, used in chunks 65, 67, 147, 148a, and 151.

iIte, used in chunks 36¢, 69b, 147, and 148a.

iLT, used in chunks 67, 147, 148a, 152b, and 154c.

iLTE, used in chunks 67, 147, 148a, 152b, and 154c.

iMax, used in chunks 65, 147, 148a, 152a, and 154c.

iMin, used in chunks 65, 147, 148a, 152a, and 154c.

iMod, used in chunks 65, 147, 148a, 152a, and 154c.

iMul, used in chunks 66, 147, 148a, 152a, and 154c.

iNEqual, used in chunks 147, 148a, and 154c.

iNot, used in chunks 55b, 56a, 58—-60, 107a, 147, and 148a.

iOr, used in chunks 58, 59, 147, and 148a.

iPi, used in chunks 35, 58, 78, 147, and 148a.

iPoint, used in chunks 147, 148a, 151, 154c, and 163a.

iSigma, used in chunks 35, 58, 73-75, 147, and 148a.

iSin, used in chunks 68, 147, 148a, 152a, and 154c.

iSqrt, used in chunks 68, 147, 148a, 152a, and 154c.

iSub, used in chunks 66, 147, 148a, 152a, and 154c.

iSucceeded, used in chunks 93b, 147, 148a, and 152c.

iTpHelp, used in chunks 105, 147, and 148a.

iTpTag, used in chunks 105, 107a, 147, and 148a.

iTrue, used in chunks 56a, 58, 62—64, 67, 75—78, 107a, 147, 148a, and 151.
iUniform, used in chunks 147, 148a, 151, and 163a.

iWildcard, used in chunks 24a, 101c, 147, and 148a.

146 (symbols and their integer representations 145)4+=
vector<string> symbolsMap;
vector<string> charsMap; // characters are encoded using numbers in the range
// [2000,2999)
int insert_ symbol(const string & symbol) {
if (symbol|0] = *\»’) {
for (unint i=0; i#charsMap.size(); i++)
if (charsMap|i] = symbol) return 2000+;
charsMap.push_ back(symbol);
int csize = charsMap.size(); assert(csize < 1000);
return 2000+-csize-1;
}
for (unint i=0; #symbolsMap.size(); i++)
if (symbolsMap|i] = symbol) return i+1;
symbolsMap.push_ back(symbol);
int csize = symbolsMap.size(); assert(csize < 1000);
return csize;
}

Defines:
insert_symbol, used in chunk 148b.
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Comment 5.0.42. The next function returns the string encoded by the input integer.

147 (symbols and their integer representations 145)4=
const string gError = "Error",
const string & getString(int code) {

if (0 < code A code < (int)symbolsMap.size())

}

Defines:

return symbolsMap|code-1];

if (2000 < code A code < 2000+ (int)charsMap.size())

return charsMap|code-2000];

switch (code) {

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

}

iNot: return gNot; case iAnd: return gAnd,

i0r: return gOr; case ilmplies: return glmplies;

ilff: return ¢Iff; case iPi: return gP%;

1Sigma: return gSigma; case iFqual: return gFqual,
ilte: return glte;  case iTrue: return g7rue;

1False: return gFulse; case iHash: return gHash;
1EmptyList: return gEmptyList;

infinity: return glnfinity,

iAdd: return gAdd,

1Sub: return gSub; case iMaz: return gMaxz;

iMin: return gMin; case iMul: return gMul,

1Div: return gDiv; case iMod: return gMod,

1LT: return gLT; case «LTE: return gLTF;

iGT: return gGT; case iGTE: return ¢GTE,

iNEqual: return gNFEqual; case iAssign: return gAssign,;
1TpHelp: return gTpHelp; case iTpTag: return gTpTag;
iSucceeded: return gSucceeded; case iFuailed: return gFailed;
1DontKnow: return gDontKnow;

1Sin: return gSin;

iCos: return gCos;

1Sqrt: return gSqrt;

1Exp: return gFxp;

tAtan2: return gAtan?2,

iUniform: return gUniform;

iCategorical: return gCategorical,

1Gaussian: return gGaussian;

iDGaussian: return gDGaussian,

1Point: return gPoint;

1Wildcard: return gWildcard,

cerr < "code = " K code K endl; assert(false);
return gFError;

getString, used in chunks 35-37, 110a, 111, 141a, 148b, 153, and 155b.

Uses iAdd 145, iAnd 145, iAssign 145, iAtan2 145, iCategorical 145, iCos 145, iDGaussian 145, iDiv 145,
iDontKnow 145, iEmptyList 145, iEqual 145, iExp 145, iFailed 145, iFalse 145, iGT 145, iGTE 145,

iGaussian 145, iHash 145, iIff 145, iImplies 145, iInfinity 145, iIte 145, iLT 145, iLTE 145, iMax 145,
iMin 145, iMod 145, iMul 145, iNEqual 145, iNot 145, iOr 145, iPi 145, iPoint 145, iSigma 145, iSin 145,
iSqrt 145, iSub 145, iSucceeded 145, iTpHelp 145, iTpTag 145, iTrue 145, iUniform 145, and iWildcard 145.
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148b

148c

148

(global symbol constants 148a)=
extern const int iNot, iAnd, iOr, ilmplies, ilff, iPi, iSigma, iEqual, ilte,

iTrue, iFalse, iHash, iEmptyList, iInfinity, iAdd, iSub, iMaz, iMin, iMul,
1Div, iMod, iLT, iLTE, iGT, iGTE, iNEqual, iAssign, iTpHelp, iTpTag,
iSucceeded, iFailed, iDontKnow, iSin, iCos, iSqrt, iExp, iAtan2,
iUniform, iCategorical, iGaussian, iDGaussian, iPoint, iWildcard,

Uses iAdd 145, iAnd 145, iAssign 145, iAtan2 145, iCategorical 145, iCos 145, iDGaussian 145, iDiv 145,
iDontKnow 145, iEmptyList 145, iEqual 145, iExp 145, iFailed 145, iFalse 145, iGT 145, iGTE 145,
iGaussian 145, iHash 145, iIff 145, iImplies 145, iInfinity 145, iIte 145, iLT 145, iLTE 145, iMax 145,
iMin 145, iMod 145, iMul 145, iNEqual 145, iNot 145, iOr 145, iPi 145, iPoint 145, iSigma 145, iSin 145,
iSqrt 145, iSub 145, iSucceeded 145, iTpHelp 145, iTpTag 145, iTrue 145, iUniform 145, and iWildcard 145.

(global:external functions 148b)=
/x symbol table x/
extern int insert_symbol(const string & symbol);
extern const siring & getString(int code);

Uses getString 147 and insert_symbol 146.

Comment 5.0.43. We now see how variables are handled. System-generated variables have
integer representations above 5000. Standard variables generated by the system are encoded using
values in the range 5000 to 99999. Fresh variables of this type are obtained using newPVar (). A
variable with code 5013, for example, corresponds to a variable pvel3. Free universal variables
generated by the universal rule in the theorem proving part of the system are encoded using values
above 100000.

(symbols and their integer representations 145)+=
static unsigned int varint = 5000;
static unsigned int wvarint = 100000;
int newPVar() { assert(varInt < 100000); return varlnt+; }
int newUVar() { return wvarlnt+; }

Defines:
newPVar, used in chunks 54a, 103c, and 111.
newUVar, used in chunk 111.
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Comment 5.0.44. Here we just systematically go through the statements and type check each
one. We need to record the inferred type for each subterm of the statement. There is a check
to make sure that the indices for statements and stat_term_types matches; that is, the i-th
element in the latter contains information about the i-th element in the former.

(statements and type checking 149a)=
bool typeCheck() {
if (—typecheck) return true;
cerr K "Type checking statements...";
int size = grouped_ statements.size();
for (int =0; i#size; i++) {
if (grouped_ statements[i] = NULL) continue;
statementType * sts = grouped_ statementsi;
while (sts # NULL) {
if (sts—typechecked) { sts = sts—next; continue; }
type x res = well Typed(sts— stmt);
if (res) { delete_type(res);
sts—typechecked = true;
} else return false;
sts = sts—next;

}

size = statements.size();

for (int =0; i#size; i++) {
if (statements|i|— typechecked) continue;
type x res = well Typed( statements|i|— stmt);
if (res) { delete_type(res);

statements|i|—typechecked = true;

} else return false;

}

cerr < "done.\n";

// cerr << "Type checking formulas...";

size = formulas.size();

for (int =0; i#size; i++) {
if (formulas|i].typechecked) continue;
type * res = well Typed(formulas|i].fml);
if (res) { delete_type(res); formulas|i|.typechecked = true; }
else return false;

}

// cerr << "done.\n";

return true;

}

Defines:
typeCheck, used in chunk 149b.
Uses delete_type 10a 10b and wellTyped 28a.

(global:external functions 148b)+=
extern bool typeCheck();
Uses typeCheck 149a.

Comment 5.0.45. Here we release the memory occupied by the statements and the data struc-
tures supporting side conditions on them. We do not have to free the term part of stat_term_types
because they point to subterms of terms residing in the statements vector.
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150a (statements and type checking 149a)+=
void cleanup _statements() {

cerr < "Cleaning up statements...";

for (unint i=0; i£grouped_ statements.size(); i++) {
if (grouped_ statements[i] = NULL) continue;
statementType * sts = grouped_ statements|d;
while (sts # NULL) {

sts— freememory();
sts = sts—next;

}

}

for (unint i=0; i#statements.size(); i++)
statements|i|— freememory();

cerr < "Done.\n";

cerr < "Cleaning up " < cachedStatements.size() <
" cached statements...";

for (unint i=0; i cachedStatements.size(); i++)
cachedStatements|i|— freememory();

cerr < "Done.\n";

}

Defines:
cleanup_statements, used in chunk 150c.

150b (statements and type checking 149a)+=
void cleanup _ formulas() {
cerr < "Cleaning up formulas...";
for (unint i=0; i#formulas.size(); i++) formulas|i].freememory();
cerr < "Done.\n";
}

Defines:
cleanup_formulas, used in chunk 150c.

150c (global:external functions 148b)+=
extern void cleanup _statements();
extern void cleanup_formulas();

Uses cleanup_formulas 150b and cleanup_statements 150a.
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Comment 5.0.46. We now describe a facility that supports the storage and retrieval of the

declared signatures of constants.

151 (constants and their signatures 151)=
struct constant_sig { int name; type * signature; };
vector<constant sig> constants;

void initialise_ constants() {
constant_ sig temp;
temp.name = iTrue; temp.signature = new type( gBool);
constants.push_ back(temp);
temp.name = iFalse; temp.signature = new type(gBool);
constants.push_ back(temp);
type * a = new type parameter("a");
type * lista = new type alg("List"); lista—addAlpha(a);
temp.name = iEmptyList; temp.signature = lista;
constants.push_ back(temp);
temp.name = iHash;
temp.signature = new type_ abs(a— clone(),

new type abs(lista— clone(), lista— clone()));

constants.push_ back(temp);

temp.name = iEqual,
temp.signature = new type_ abs(a— clone(),

new type abs(a—clone(), new type(gBool)));
constants.push_ back(temp);

temp.name = ilnfinity; temp.signature = new type_parameter("number");
constants.push_ back(temp);

temp.name = iUniform;
temp.signature = new type_ abs(lista— clone(),

new type abs(a— clone(), new type(gFloat)));
constants.push_ back(temp);

temp.name = iCategorical;
temp. signature = temp.signature— clone();
constants.push_ back(temp);

temp.name = iGaussian,
temp.signature = new type_ abs(new type(gFloat),
new type abs(new type(gFloat),
new type abs(new type(gFloat),
new type(gFloat))));
constants.push_ back(temp);

temp.name = iDGaussian;
temp.signature = new type_ abs(new type(gFloat),
new type abs(new type(gFloat),
new type_abs(new type(gFloat),
new type(gFloat))));
constants.push_ back(temp);

temp.name = iPoint;
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temp.signature = new type_ abs(a— clone(),
new type_abs(a—clone(), new type(gFloat)));
constants.push_ back(temp);

(initialise constants::arithmetic operations 152a)
(initialise constants::relational operations 152b)
(initialise constants::disruptive operations 152c)
Defines:
initialise_constants, used in chunk 153e.

Uses iCategorical 145, iDGaussian 145, iEmptyList 145, iEqual 145, iFalse 145, iGaussian 145, iHash 145,
iInfinity 145, iPoint 145, iTrue 145, and iUniform 145.

152a (initialise constants::arithmetic operations 152a)=
type * number = new type_ parameter("number");
type * number2 = new type_parameter("number2");
type x number3 = new type_ parameter("number3");
type * algtype = new type abs(number, new type abs(number2,numbersy));
temp.name = iAdd; temp.signature = algtype; constants.push_ back(temp);
temp.name = iSub; temp.signature = algtype— clone(); constants.push_ back(temp);
temp.name = iMaz; temp.signature = algtype— clone(); constants.push_ back(temp);
temp.name = iMin; temp.signature = algtype— clone(); constants.push_ back(temp);
temp.name = iMul;, temp.signature = algtype— clone(); constants.push_ back(temp);
temp.name = iMod, temp.signature = algtype— clone(); constants.push_ back(temp);
temp.name = iDiv; temp.signature = algtype— clone(); constants.push_ back(temp);
temp.name = iAtan2;temp.signature = algtype— clone(); constants.push_ back(temp);
type * tempsig = new type  abs(number2—s clone(),numbers3— clone()) ;
temp.name = iSin; temp.signature = tempsig; constants.push_ back(temp);
temp.name = iCos; temp.signature = tempsig— clone(); constants.push_ back(temp);
temp.name = iSqrt; temp.signature = tempsig— clone(); constants.push_ back(temp);
temp.name = iEzp; temp.signature = tempsig— clone(); constants.push_ back(temp);

Uses iAdd 145, iAtan2 145, iCos 145, iDiv 145, iExp 145, iMax 145, iMin 145, iMod 145, iMul 145, iSin 145,
iSqrt 145, and iSub 145.

152b (initialise constants::relational operations 152b)=
type * reltype = new type_ abs(number— clone(),
new type_abs(number2— clone(), new type(gBool)));
temp.name = iGT; temp.signature = reltype; constants.push_ back(temp);
temp.name = iGTE; temp.signature = reltype— clone(); constants.push_ back(temp);
temp.name = iLT; temp.signature = reltype— clone(); constants.push_ back(temp);
temp.name = iLTFE; temp.signature = reltype— clone(); constants.push_ back(temp);
Uses iGT 145, iGTE 145, iLT 145, and iLTE 145.

Comment 5.0.47. The following constants are for disruptive operations, that is, operations that
changes persistent objects.

152¢ (initialise constants::disruptive operations 152c)=
temp.name = iSucceeded; temp.signature = new type("Success");
constants.push_ back(temp);
temp.name = iFailed; temp.signature = new type("Success");
constants.push_ back(temp);
temp.name = iAssign;
temp.signature = new type_ abs(a— clone(),
new type abs(a— clone(), new type("Success")));
constants.push_ back(temp);
Uses iAssign 145, iFailed 145, and iSucceeded 145.
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153a (constants and their signatures 151)4+=
void insert_ constant(int name, type * sig) {
assert(name > 0);
for (unint i=0; i#constants.size(); i++)
if (constants[i].name = name)
{ (insert constant:error message 153b) return; }

constant_sig temp; temp.name = name; temp.signature = sig;
constants.push_ back(temp);

}

Defines:
insert_constant, used in chunk 153e.

153b (insert constant:error message 153b)=
int osel = getSelector(); setSelector(STDERR);
cerr < "The constant "< getString(name) <
" has been defined before with type " <K
constants|i.signature—getName() < ".\nInstruction ignored.\n";
setSelector(osel);
Uses getSelector 164 165, getString 147, and setSelector 164 165.

153c (constants and their signatures 151)+=

type * get_ signature(int name) {

for (unint i=0; i constants.size(); i++)
if (constants|i|.name = name) return constants|i|.signature;

cerr < "Unknown constant: " < getString(name) < endl;
// assert(false);
return NULL;

}

Defines:

get_signature, used in chunks 23a and 153e.
Uses getString 147.

153d (constants and their signatures 151)+=

void cleanup constants() {
cerr < "Cleaning up constants...";
for (unint i=0; i constants.size(); i++)

delete_type(constants|i].signature);

cerr < "Done.\n";

}

Defines:

cleanup_constants, used in chunk 153e.
Uses delete_type 10a 10b.

153e (global:external functions 148b)+=
extern void initialise_ constants();
extern void insert_constant(int name, type * sig);
extern type x get_ signature(int name);
extern void cleanup_constants();

Uses cleanup_constants 153d, get_signature 153c, initialise_constants 151, and insert_constant 153a.

Comment 5.0.48. Information about function symbols (collected during parsing) are stored in
a hash table for quick and easy access. We now describe this function symbol table.
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154a (function symbol table 154a)=
struct fEntry {
int name;
int minEffectArity;
int maxEffectArity;
fEntry(int n, int min, int maz) {
name = n; minEffectArity = min; mazEffectArity = maz; }

b

#define TABLESIZE 501
static vector<fEntry> func_info| TABLESIZE],

Comment 5.0.49. Clearly, we want a hash function that can be computed efficiently. Looking
at the first and last characters in the function name seemed a reasonable idea. (Looking at every
character seemed expensive, but there is probably not much in it.) We need to add size to make
sure functions that begin and end with the same characters are hashed to different indices with
high probability.

154b (function symbol table 154a)+=

static int eshash(int name) {
// int size = name.size();
// int ret = name[0] * name[size-1] - (name[0] + name[size-1]|) + size;
// ret = ret % TABLESIZE;
// return ret;
return name % TABLESIZE;

}

Defines:
hash, never used.

Comment 5.0.50. We can probably have a scheme whereby we try out different hash functions
at run time and decide on one that induces the best distribution of functions in the table.

Comment 5.0.51. Here we need to initialise information for functions that are implemented
inside the code.

154c (function symbol table 154a)+=
void initFuncTable() {

insert_ftable(iAdd, 2); insert_ ftable(iSub, 2);

insert_ ftable(iMaz, 2); insert_ ftable(iMin, 2);
insert_ ftable(iMul, 2); insert_ ftable(iDiv, 2);
insert_ftable(iMod, 2); insert ftable(iAtan2, 2);
insert_ftable(iSin, 1); insert_ ftable(iCos, 1);
insert_ftable(iSqrt, 1); insert_ ftable(iExp, 1);
insert_ ftable(iLT, 2); insert_ ftable(iLTE, 2);
insert_ftable(iGT, 2); insert_ ftable(iGTE, 2);
insert_ ftable(iAssign, 2); insert_ftable(iEqual, 2);
insert_ ftable(iNEqual, 2);
insert_ftable(iPoint, 1);

}

Defines:
initFuncTable, used in chunk 156b.

Uses iAdd 145, iAssign 145, iAtan2 145, iCos 145, iDiv 145, iEqual 145, iExp 145, iGT 145, iGTE 145, iLT 145,
iLTE 145, iMax 145, iMin 145, iMod 145, iMul 145, iNEqual 145, iPoint 145, iSin 145, iSqrt 145, iSub 145,
and insert_ftable 155a.
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Comment 5.0.52. Basic insertion is okay. We first check whether func is already present before
inserting.

155a (function symbol table 154a)+=
void insert_ ftable(int func, int earity) {
int index = eshash(func);
int size = func_info[index].size();
for (int =0; i#£size; i++)
if (func_infolinded][i].name = func) {
if (earity < func_infolindex]|[d]. minEffectArity)
func_infolindex][i].minEffectArity = earity;
else if (earity > func_info[index][i].maxEffect Arity)
func_infolindex][i].mazEffectArity = earity;
return;
}
fEntry f(func, earity, earity);
func_infolindex].push_ back(f);
// print_ ftable();
}

Defines:
insert_ftable, used in chunks 154c and 156b.
Uses print_ftable 156a.

155b (function symbol table 154a)+=
pair<int,int> getFuncEArity(int func) {
assert(func > 0);
pair<int,int> ret(-1,-1);
int index = eshash(func);
int size = func_info|index].size();
for (int i=0; i#size; i++)
if (func = func_infolindex][i].name) {
ret.first = func_infolinde][i].minEffect Arity;
ret.second = func_infolindex][i|. mazEffect Arity;
return ret;
}
cerr < "Error: Function " < getString(func) < " unknown.
"Effective arity could not be determined.\n";
// assert(false);
return ret;

}

Defines:
getFuncEArity, used in chunks 82e, 83e, and 156b.
Uses getString 147.
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156a (function symbol table 154a)+=
void print_ ftable() {
for (int j=0; j2TABLESIZE; j+) {
cout L j "
int size = func_info[j].size();
for (int i=0; i#£size; i++)
cout € " (" K func_info[j][]].name < " "
& func_infolj|[)]. minEffectArity < " "
< func_info[j]|i]. mazEffectArity < ")\t";
cout < endl;

}

Defines:
print_ftable, used in chunks 155a and 156b.

156b (global:external functions 148b)+=
/x function symbol table */
extern void nitFuncTable();
extern void insert_ftable(int func, int earity);
extern pair<int,int> getFuncEArity(int func);
extern void print_ ftable();
Uses getFuncEArity 155b, initFuncTable 154c, insert_ftable 155a, and print_ftable 156a.

156¢ (nonrigid constants 156¢)=
set<int> nonrigid_ constants;

void insert_nonrigid_ constant(int name) { nonrigid_ constants.insert(name); }
bool is_rigid_ constant(int name) {

return (nonrigid_ constants.find(name) = nonrigid_ constants.end());
}

Uses insert 30e.
156d (global:external functions 148b)+=

extern void insert_nonrigid_ constant(int name);
extern bool is rigid constant(int name);
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Comment 5.0.53. This facility is used to provide mappings from type names to type objects.

The initial assignment was performed in the parser.

157a (type name to type objects mapping 157a)=

#include <map>
static map<string, pair<int, type x> > type_ fac;

void insert_type(const string & tname, int z, type x tp) {
assert(type_ fac.find(tname) = type _fac.end());
pair<int, type x> temp(z, tp);
type_ fac[tname|] = temp;

pair<int, type x> get_type(const string & tname) {
map<string, pair<int,type x> >:iterator p = type_fac.find(tname);

if (p = type_ fac.end()) { pair<int,type x> ret(-5,NULL); return ret; }
return p— second;

}

void cleanup _synonyms() {
cerr < "Cleaning up type synonyms...";
map<string, pair<int, type x> >::iterator p = type_fac.begin();

while (p # type_fac.end()) { delete_ type(p— second.second); p++; }
cerr < "Done.\n";

}

Defines:

cleanup_signatures, never used.
get_type, used in chunk 157b.

insert_type, used in chunk 157b.
Uses delete_type 10a 10b.

157b (global:external functions 148b)+=

extern void insert_type(const string & tname, int , type * tp);

extern pair<int, type x> get type(const string & tname);
extern void cleanup _synonyms();

Uses get_type 157a and insert_type 157a.
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Comment 5.0.54. We next look at how statements are stored in the system. We use a vector of
linked-lists of statements, indexed by the leftmost function symbol on the LHS of each statement.
This allows us to jump straight to the relevant statements in constant time when doing pattern
matching.

(statements insertion and printing 158a)=
void insert_ statement(statementType * st) {
assert(st—anchor > 0);
int gsize = grouped_ statements.size();
/* grow vector if it is not big enough */
if (st—anchor > gsize-1)
for (int i=0; i#st—anchort1; i++)
grouped_ statements.push_ back(NULL);
assert(st—anchor < (int)grouped_ statements.size());
/* insert statement x/
if (grouped_ statements|st—anchor] = NULL) {
grouped__ statements|st—anchor] = st;
return;
}
statementType x p = grouped_ statements|st— anchor];
while (p—next # NULL) p = p—neat,
p—rnext = St;
}
Defines:

insert_statement, used in chunk 158c.
Uses insert 30e.

(statements insertion and printing 158a)+=
void print_ grouped_ statements() {

setSelector(STDOUT);

for (int =0; £ (int) grouped_ statements.size(); i++) {
if (grouped statements[i] = NULL) continue;
joprint("***x*¥\n");
grouped__ statements|i|— print();
toprint("---\n");

}
Defines:

print_grouped_statements, used in chunk 158c.
Uses ioprint 164 165 and setSelector 164 165.

(global:external functions 148b)+=
extern void insert_ statement(statement Type * st);
extern void print_ grouped _statements();

Uses insert_statement 158a and print_grouped_statements 158b.



159

Comment 5.0.55. Here are some functions for checking container membership.

159a (misc functions 159a)=

bool inVector(int z, vector<int> & v) {
vector<int>::iterator p = find(v.begin(), v.end(), z);
return (p # v.end());

}

bool subset(vector<int> v1, vector<int> v2) {
int size = vl.size();
for (int =0; i#size; i++)

if (—inVector(v1[i], v2)) return false;

return true;

}

Defines:
inVector, used in chunks 48a and 159b.
subset, used in chunk 159b.

159b (global:external functions 148b)+=
bool inVector(int z, vector<int> & v);
bool subset(vector<int> vl, vector<int> v2);
Uses inVector 159a and subset 159a.

Comment 5.0.56. The following implements uniform sampling from a collection of terms rep-
resented in a (non-empty) list (the input argument). We have to go through the list first to find
out the size of the collection. If the size is given as an argument, we can just flip a coin and go

straight to the desired term.

159¢ (misc functions 159a)+=
vector<term x> usamplingset;
pair<term *, float> uniformSampling(term * items) {
usamplingset.clear();
assert(items—isApp() A items—lc()—lc()—isD(iHash));
while (—items—isD(iEmptyList)) {
usamplingset.push_ back(items—lc()—rc());
items = items—rc();
}
int ssize = usamplingset.size();
int ¢ = random() % ssize;
pair<term x, float> ret(usamplingset[i], 1.0 + ssize);
return ret;

}

Uses iEmptyList 145, iHash 145, isApp 30a, isD 30a, 1c 30e, and rc 30e.
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Comment 5.0.57. The next function implements sampling from a categorical distribution. We
assume the input argument has the form

[(tl,nl), ey (tk,nk),

where each t; is a term and n; its probability.

160 (misc functions 159a)+=
vector<pair<term x float> > msamplingset;
pair<term *,float> categoricalSampling(term * arg) {

}

msamplingset.clear();
float counter = 0;
assert(arg—isApp() N arg—lc()—lc()—isD(iHash));
while (—arg—isD(iEmptyList)) {
pair<term x,float> element;
element.first = arg—lc()—re()— fields[0];
counter += arg—lc()—re()— fields[1]— numf;
element.second = counter;
msamplingset.push_ back(element);
arg = arg—re();
}
assert(msamplingset.size() > 0); assert(counter = 1);
int r = random() % 100;
unint © = 0;
while (r+100.0 > msamplingset|i].second) { i++; }
float prob;
if (i = 0) prob = msamplingset|i].second,
else prob = msamplingset|i].second - msamplingset|i-1].second,
pair<term *,float> ret(msamplingset|i].first,prob);
return ret;

Uses iEmptyList 145, iHash 145, isApp 30a, isD 30a, 1c 30e, and rc 30e.
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Comment 5.0.58. The next function implements sampling from a normal distribution. We use
the Box-Muller-Marsaglia polar method described in [Knu97].

161 (misc functions 159a)+=
float gaussDens(float mu, float sigma, float z) {

}

assert(sigma > 0);

float s1 = 1.0 =+ (sigma * sqrt( 2 * 3.14159));

float s2 = (z - mu) * (z- mu) + (2 * sigma * sigma);
float ret = s1 % exp (-1.0 * s2);

return ret;

pair<term x,float> ret;
pair<term *,float> gaussianSampling(term x m, term * s) {

}

assert(m—isfloat N s—isfloat);
float w1, u2, vi, v2, S,
do {
ul = (random() % 100) < 100.0;
u2 = (random() % 100) = 100.0;
vl = 2xul - 1;
v2 = 2xul - 1;
S = ulxul + u2xu2;
} while (S > 1.0);
float z1; // float x2;
if(S=0){z1=0; /%« x2=0; %/ }
else { z1 = vl * sqri( -2xlog(S)=+9 );
/x x2 = v2 * sqrt( -2*log(S)/S ); */ }

ret.first = new_term_ float(m—numf + s—numf x x1);
ret.second = gaussDens(m—snumf, s—numf, ret.first—numf);

return ret;

Uses new_term_float 40a.
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162 (misc functions 159a)+=
+x vector<pair<term x,float> > dgsamplingset;
pair<term xfloat> dgaussianSampling(term x m, term x s) {
assert(m—isfloat A s—isfloat);
dgsamplingset.clear();

float mu = m—numf, float sigma = s—numf,
pair<term x,float> cent;

cent.first = new_term_ float(mu);

cent.second = gaussDens(mu,sigma,mu);

float total = 0;

for (int =0; #6; i++) {
pair<term x,float> cent;
cent.first = new_term_ float(mu + wsigma);
cent.second = gaussDens(mu,sigma,mu + ixsigma);
dgsamplingset.push_ back(cent);
total += cent.second,

if (i=0) continue;

cent.first = new_term_ float(mu - ixsigmay);
cent.second = gaussDens(mu,sigma,mu + xsigma);
dgsamplingset.push_ back(cent);

total += cent.second,

}

float offset = 0;
for (unint j=0; j#£dgsamplingset.size(); j+) {
dgsamplingset|j].second =
offset + dgsamplingset|j].second + total,
offset = dgsamplingset|j].second,

}

for (unint i=0; #dgsamplingset.size(); i++) {
setSelector(STDOUT);
dgsamplingset|i].first— print();
cout € "," < dgsamplingset]i].second < " ",
// revertSelector();

} cout < endl,

int r = random() % 1000;
unint 1 = 0;
while (r+1000.0 > dgsamplingset[i].second) { i++; }
float prob;
if (i = 0) prob = dgsamplingset|i].second;
else prob = dgsamplingset|i].second - dgsamplingset[i-1].second,
pair<term *,float> ret(dgsamplingset[d].first, prob);
return ret;
s

Uses new_term_float 40a and setSelector 164 165.

Comment 5.0.59. This is the public function called to invoke the appropriate sampling routine.
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163a (misc functions 159a)+=
pair<term *, float> sample(term * density) {
assert(density—isApp());
pair<term *, float> ret(NULL,0.0);
term * distr = density— spineTip();
if (distr—isF(iUniform))
ret = uniformSampling(density—rc());
else if (distr—isF(iCategorical))
ret = categoricalSampling(density—rc());
else if (distr—isF(iGaussian)) {
float m = density—lc()—rc()—numf;
float s = density—rc()—numf;
while (true) {
ret = gaussianSampling(density—lc()—rc(), density—rc());
if (fabs(ret.first—numf- m) < 2xs) break;
ret. first— freememory();
}
}
// else if (distr->isF(iDGaussian))
// ret = dgaussianSampling(density->lc()->rc(), density->rc());
else if (distr—isF(iPoint)) {
ret.first = density—rc()— clone(); ret.second = 1.0; }
return ret;

}

Uses iCategorical 145, iDGaussian 145, iGaussian 145, iPoint 145, iUniform 145, isApp 30a, isF 30a, 1c 30e,
rc 30e, and spineTip 32e.

163b (global:external functions 148b)+=
pair<term x, float> sample(term * density);

Comment 5.0.60. The following are two functions for converting numbers to their string repre-
sentations.

163c (global:external functions 148b)+=
#include <sstream>
inline string numtostr(const int i) { stringstream s; s < 4; return s.str(); }
inline string numtostr(const double i) { stringstream s; s < i; return s.str(); }
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5.1 10O Facilities

Comment 5.1.1. Silent printing is a useful trick I learned from [Knu86].

164 (io.h 164)=
#ifndef _I0_H_
#define _I0_H_

#include <string>

#include <iostream>
#include <fstream>
#include <stdio.h>
using namespace std;

#define STDOUT 1
#define STDERR 2
#define SILENT 3
#define EXFILE 4
#define PIPE 5

void initPipe();

void closePipe();

void setSelector(FILE x in);
void setSelector(int z);

int getSelector();

void iopm'nt(const string & x);
void ioprint(int z);

void ioprint(long long int z);
void ioprint(double z);

void ioprint(char z);

void ioprintin(const string & z);
void ioprintin(int z);

void ioprintin(long long int z);
void ioprintin(double z);

void ioprintin(char z);

void ioprintin();

#endif

Defines:
getSelector, used in chunks 25-27, 35, 37a, 89b, 91-93, 103d, 110a, and 153b.
ioprint, used in chunks 25-27, 35-37, 42a, 63c, 89b, 91-93, 101-103, 107a, 109d, 110a, 141, 142, and 158b.
ioprintln, used in chunks 25-27, 37c, 42a, 63c, 85a, 89b, 91-93, 102a, 103d, 107a, and 139a.
setSelector, used in chunks 25-27, 42a, 63c, 84b, 85a, 89b, 91-93, 101-103, 109d, 142, 153b, 158b, and 162.
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5.1. IO FACILITIES

165

(io.cc 165)=

#include "io.h"

ofstream bepipe;

FILE x iofile;

static int selector;

ofstream logfile("Llog.complete");

void initPipe() { bepipe.open("pipel"); bepipe.setf(ios: fized); }
void closePipe() { bepipe.close(); }

void setSelector(FILE x in) { iofile = in; selector = EXFILE; }
void setSelector(int z) { selector = =x; }

int getSelector() { return selector; }

void ioprint(const string & z) {

(io::common print command 166a) (io::file 166¢) }
void ioprint(int z) {

(io::common print command 166a) (io::file 2 166d) }
void ioprint(long long int z) {

(io::common print command 166a) (io::file 2a 166¢) }
void ioprint(double z) {

// cout.setf(ios:fixed, ios:floatfield);

cout.setf(ios::showpoint);

(io::common print command 166a) (io::file 3 166f) }
void ioprint(char z) {

(io::common print command 166a) (io:file 4 166g) }
void ioprintin(const string & z) {

(io::common print command In 166b) (io::file 166¢) }
void ioprintin(int z) {

(io::common print command In 166b) (io::file 2 166d) }
void ioprintin(long long int z) {

(io::common print command In 166b) (io::file 2a 166e) }
void ioprintin(double z) {

//cout.setf(ios::fixed, ios::floatfield);

cout.setf(ios::showpoint);

(io::common print command In 166b) (io::file 3 166f) }
void ioprintin(char z) {

(io::common print command In 166b) (io::file 4 166g) }
void ioprintin() {
#ifdef DEBUG

logfile < endl;
#endif

if (selector = SILENT) return;

else if (selector = STDOUT) cout < endl,

else if (selector = EXFILE) fprintf(iofile, "\n");

else if (selector = PIPE) bepipe < endl;

else cerr < endl;

}

Defines:

getSelector, used in chunks 25-27, 35, 37a, 89b, 91-93, 103d, 110a, and 153b.

ioprint, used in chunks 25-27, 35-37, 42a, 63c, 89b, 91-93, 101-103, 107a, 109d, 110a, 141, 142, and 158b.
ioprintln, used in chunks 25-27, 37c, 42a, 63c, 85a, 89b, 91-93, 102a, 103d, 107a, and 139a.

setSelector, used in chunks 25-27, 42a, 63c, 84b, 85a, 89b, 91-93, 101-103, 109d, 142, 153b, 158b, and 162.
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166g

5.1. IO FACILITIES

166

(io::common print command 166a)=
// #define DEBUG
#ifdef DEBUG
logfile <
#endif
if (selector = SILENT) return;
if (selector = STDOUT) cout < w;
if (selector = STDERR) cerr <
else if (selector = PIPE) bepipe <

(io::common print command In 166b)=
#ifdef DEBUG
logfile < © < endl;
#endif
if (selector = SILENT) return,;
if (selector = STDOUT) cout < z <
if (selector = STDERR) cerr < z <
else if (selector = PIPE) bepipe < ©

(io::file 166c)=
if (selector = EXFILE) fprintf(iofile,

(io::file 2 166d)=
if (selector = EXFILE) fprintf(iofile,

(io::file 2a 166¢)=
if (selector = EXFILE) fprintf(iofile,

(io:file 3 166f)=
if (selector = EXFILE) fprintf(iofile,

(io:file 4 166g)=
if (selector = EXFILE) fprintf(iofile,

endl;
endl;
< endl;

z.c_str());

"%d", CC),

"%11d", 1);

n%fn7 flf),

"%C", I),



Chapter 6

System Modules

6.1 The Booleans Module

167 (booleans.es 167)=
- Equality and Disequality

remove : (a -> Bool) -> (a -> b) -> (a -> b) ;
(remove s \x.d_SV/CONST/) = \x.d_SV ;
- where d_SV is a default term (FIX THIS)

(remove s \x.if u_SV then v else w_SV) =
\x.if (&& u_SV (not (s x))) then v else ((remove s \x.w_SV) x) ;

- = :a ->a -> Bool ;
import sets.es ;

(= \x.u_SV \y.v_8V) =
(&& (less \x.u_SV \y.v_SV) (less \y.v_SV \x.u_SV)) ;

less : (a ->b) -> (a -> b) -> Bool ;
(less \x.d_SV/CONST/ z) = True ;
- where d_SV is a default term (FIX THIS)
(less \x.if u_SV then v else w_SV z) =
\forall x.(&& (implies u_SV (= v (z x)))
(less (remove \x.u_SV \x.w_SV) z)) ;

ite : (Bool * a * a) -> a ;
if True then u else v = u ;
if False then u else v = v ;
if x then x_SV else y_SV/EQUAL,x_SV/ = x_SV ;

if if x then y else w then True else z = if x then y else (glueite w z) ;

glueite : b -> a -> b ;

(glueite False w) = w ;

(glueite 0.0 W) = w ;

(glueite if x then y else z w) = if x then y else (glueite z w) ; Eager ;
- this Eagerness is necessary to ensure correctness

167
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- if (if u then True else False) then True else v = if u then True else v ;
- if u_SV then False else v_SV/EQUAL,u_SV/ = False ;

- if u_SV then True else (if v_SV/EQUAL,u_SV/ then True else w_SV =

- if v_SV then True else w_SV ;

- this something useful to convert if-then-else’s to ||’s and &&’s
- if u then v else w = (|| (& u v) (&& (not w) w)) ;

- (if x then y else z w) = if x then (y w) else (z w) ; LastResort ;
- \forall w.\forall x.\forall y.\forall z.(= (w if x then y else z) if x then (w y) else (w z)) ;

&& : Bool -> Bool -> Bool ;

(&& True x) = x ;

(&& x True) = x ;

(&& False x) = False ;

(&& x False) = False ;

- Do we really need these? Apparently permute need them.

&& (Il xy) z) =] (& x z) (& y z)) ; LastResort ;

&& x (Il yz)) = (| (&& x y) (&& x z)) ; LastResort ;

(&& if u then v else w t) if (& u t) then v else (&& w t) ; LastResort ;
(&& t if u then v else w) if (&& t u) then v else (& t w) ; LastResort ;

[N | - A

The following are specialized versions of the two rules above.
- In computations, I find that the two rules given above tend to work
(really) badly when used in conjunction with Escher’s leftmost outermost
- reduction order. A more in-depth analysis of this phenomenon is called for.
(&& if (= z u) then v else w t) =
if (& (= z u) t) then v else (& w t) ; LastResort ;
(&& t if (= x u) then v else w) =
if (&& t (= x u)) then v else (&& t w) ; LastResort ;

|| : Bool -> Bool -> Bool ;
(Il True x) = True ;

(Il x True) = True ;

(|| False x) = x ;

(Il x False) = x ;

(Il if u then True else w t) = if u then True else (|| w t) ; LastResort ;
(Il if u then False else w t) = (|| (&& (not u) w) t) ; LastResort ;

(Il t if u then True else w) = if u then True else (|| t w) ; LastResort ;
(Il £t if u then False else w) = (|| t (&& (not u) w)) ; LastResort ;

- this is needed when using rmdup2
(Il (= x_SV u_sV) (= y_SV/EQUAL,x_SV/ v_SV/EQUAL,u_SV/)) = (= x_SV u_SV) ;

not : Bool -> Bool ;

(not False) = True ;

(not True) = False ;

(not (not x)) = x ;

(not (&& x y)) = (|| (not x) (mot y)) ; LastResort ;

(not (Il x y)) (&& (not x) (not y)) ; LastResort ;

(not if u then v else w) = if u then (not v) else (not w) ; LastResort ;
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sigma : (a -> Bool) -> Bool ;
(existential statements 170)

pi : (a -> Bool) -> Bool ;
(universal statements 171)

implies : Bool -> Bool -> Bool ;

(implies True x) = x ; - these are needed by queries 8 and 9 in
(implies False x) = True ; - the database example

- (implies p q) = (|| (not p) q) ; LastResort ; - this affects pi, bad.
/= : a -> a -> Bool ;

(/=xy) = (not (= xy)) ;

comp : (a ->b) -> (b ->c) ->a->c;
- (comp p1 p2) = \x.(p2 (p1 x)) ;
(comp pl p2 x) = (p2 (pl x)) ;

projl : (a * b) -> a ;
(proj1l (t1,t2)) = t1 ;

proj2 : (a * b) -> b ;
(proj2 (t1,t2)) = t2 ;

identity : a -> a ;
(identity x) = x ; LastResort ;

- These are used by the theorem prover
TpTag : ProveStatus -> Bool -> Bool ;
DontKnow : ProveStatus ;
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Comment 6.1.1. The rules for ¥ as presented in [L1003] are as follows:
dzq.--Jz,. T=T (6.1)
Jzy.-- - Jz,.L=1 (6.2)
g Tz (XA (=) Ay) = 2y - Ty 3w - T (x{x; /ul Ay{z;/u}) (6.3)
Jzy.--Fzp.(uVv) =3z - Jzpa) V (3zg. - - T2, V) (6.4)
Fxq. - Jzy,.(if u then T else v) = (if z1. - x,.u then T else Jxy. -+ -z, v (6.5)
Jxq. - Fzy,.(if wthen T else v) = Jxq. -+ -z (-u vV v) (6.6)

Statements 6.1 to 6.3 are implemented in the internal simplification routines. We now look at how
the remaining statements are implemented in the booleans module. The expression dx; - - - Jx,, in
the heads is a bit worrying. How can we capture that in a finite number of statements? The answer
is very simple: replace Jz; - - - Jx,, with dz in Statements 6.4 to 6.6. Here are some questions for
the reader. Why can we do that? What is the cost of doing that? Why do we bother with the
case of Jx; ---Jxg for Statements 6.4 and 6.5 but not Statement 6.67 Is the number 3 special or

can (should?) it be so some other number?

(existential statements 170)=
(sigma \x. (|| u_SV v_SV)) = (|| (sigma \x.u_SV) (sigma \x.v_SV)) ;
(sigma \x1.(sigma \x2.(sigma \x3.(|| u_SV v_SV)) ) ) =
(Il (sigma \x1.(sigma \x2.(sigma \x3.u_SV)))
(sigma \x1.(sigma \x2.(sigma \x3.v_SV)))) ;

(sigma \x.if u_SV then True else v_SV) =
if \exists x.u_SV then True else \exists x.v_SV ;
(sigma \x1.(sigma \x2.(sigma \x3.if u_SV then True else v_SV))) =
if (sigma \x1.(sigma \x2.(sigma \x3.u_SV))) then True
else (sigma \x1.(sigma \x2.(sigma \x3.v_SV))) ;

(sigma \x.if u_SV then False else v_SV) = (sigma \x.(|| (not u_SV) v_SV))

(sigma \x2.(sigma \x1.(sigma \x.if u_SV then False else v_SV))) =
(sigma \x2.(sigma \x1.(sigma \x. (|| (not u_SV) v_SV)))) ;
(sigma \x.if u_SV then v_SV else w_SV) =
if (sigma \x.(&& u_SV v_SV)) then True
else (sigma \x.(&& (not u_SV) w_SV)) ; LastResort ;

- \exists x.if u_SV then v_SV else w_SV =

B

- if \exists x.(&& u_SV v_SV) then True else \exists x.(&& (not u_SV) w_SV) ;

Comment 6.1.2. The rules for II as stated in [L1o03] are as follows:

Yoy Ve (L —u)=T
Vey. o V. (x Az, =u) ANy - v) =
Vey. o Va,_1.Veip. Ve, (x ANy = v){z;/u})
Vey. o Vap.(uVv —=t) = (Vay. - Vep.(u = t) A (Ve - Va,. (v = t))

Vep.- Ve, ((teu T v) = t) = (Voq. - - Va,.(u— t) A (Vay. - - Ve, (v = t))

Vey. Vo, ((iteu Lv) = t) =V - Va,.(-uAv — t)

Statements 6.7 and 6.1.2 are implemented as part of the internal simplification routine. Notice

that the body of Statements 6.9 and 6.10 are identical. If we include the statement

if uthen T elsev=uVv

(6.12)
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as part of the ite rules, then we can get Statement 6.10 from Statement 6.9 via Statement 6.12.
Proceeding in a similar fashion, we can use

if wthen L elsev=—-uAv (6.13)

to get rid of Statement 6.11 (and Statement 6.6). One thing with Statements 6.12 and 6.13 is that
they force the a in the type of ite to be boolean. Can we do this simplification? If we want to
retain the flexibility of handling sets represented both as nested ites and disjunctions, the answer
is unfortunately no. This is because Statement 6.12 will transform any set represented in ite form
into its corresponding disjunctive form. This will, for example, affect the operation of less, which
is only defined for sets represented in ite form.

So we cannot do that simplification. (We can probably still safely use Statement 6.13, but we will
not try.) That means we have to find a way to represent Statements 6.9-6.11. The following rules
together capture them finitely.

Ve.(uVv —t)=Vr.(u—t) AVe.(v = t) (6.14)
Va.((if uthen T else v) = t) = Va.(u = t) AVa.(v = t) (6.15)
Ve.(VyuAVzv) =VeVyuAVeVzv (6.16)
Vo.((if u then L else v) = t) =Va.(-uAv —t) (6.17)

Question 6.1.3. Why do not we need the following counterpart
Vay. V2, (T - u) =V -Vo,.u
to Statement 6.77 I did see the need to put in T — w = u in the module for some queries to work.

(universal statements 171)=
(pi \x.False) = False ;
(pi \x.True) = True ;
(pi \x1.(implies (l|| u_SV v_3V) t_SV)) =
(&& (pi \x1.(implies u_SV t_SV)) (pi \x1.(implies v_SV t_SV))) ;
(pi \x1.(implies if u_SV then True else v_SV t_SV)) =
(&& (pi \x1.(implies u_SV t_SV)) (pi \x1.(implies v_SV t_SV))) ;

(pi \x.(&& (pi \x1.u_SV) (pi \x2.v_SV))) =
(&& (pi \x.(pi \x1.u_SV)) (pi \x.(pi \x2.v_SV))) ;

(pi \x.(implies if u_SV then True else v_SV t_SV)) =
(pi \x.(implies (&& (not u_SV) v_SV) t_SV)) ;

- if u then True else v = (|| u v)
- if u then False else v = (&& (not u) v)
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6.2 The Numbers Module

172 (numbers.es 172)=
Infinity : a ;
NegInfinity : a ;

(add x_SV/CONST/ Infinity) = Infinity ;
(add Infinity x_SV/CONST/) = Infinity ;
(sub x_SV/CONST/ Infinity) = NegInfinity ;

(sub Infinity x_SV/CONST/) = Infinity ;

(min x_SV/CONST/ Infinity) = x_SV ;
(min Infinity x_SV/CONST/) = x_SV ;
(add x 0.0) = x;

(add 0.0 x) = x

(mul x 0.0) = 0.0 ;

(mul 0.0 x) = 0.0 ;

(div 0 x) = 0 ;

(div 0.0 x) = 0.0 ;

(mul 1 x) = x

(mul 1.0 x) = x ;

Power : (numberl * Int) -> number2 ;
power : (numberl * Int) -> number3 ;
(power (1,n)) = 1;
(power (m_SV/CONST/,0)) =1 ;
(power (m_SV/CONST/,1)) m_SV ;
(power (m_SV/CONST/,n_SV/CONST/)) = if (&& (<= m_SV 16) (< n_SV 16)) then
(power2 (m_SV,n_SV))
else (Power (m_SV,n_SV)) ;

power2 : (numberl * Int) -> number2 ;
(power2 (m_SV/CONST/,n_SV/CONST/)) = (mul m_SV (power (m_SV,(sub n_SV 1)))) ;

integer : numberl -> number2 -> number3 ;
(integer x y) = (sub (div x y) (remainder x y)) ;

remainder : numberl -> number2 -> number3 ;
(remainder x y) = (div (mod x y) y) ;

monus : numberl -> number2 -> number3 ;
(monus x_SV/CONST/ y_SV/CONST/) = (max O (sub x_SV y_SV)) ;

- this produces a loop
- (> (add u_SV/CONST/ (card v)) v_SV/CONST/) =
- if (> u_SV v_SV) then True else (> (add u_SV (card v)) v_SV) ;

- > : number -> number -> Bool ;
- (> if u then v_SV/CONST/ else w_SV/CONST/ x_SV/CONST/) =
- if u then (> v_SV x_8SV) else (> w_SV x_SV) ;

- >= : number -> number -> Bool ;
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- (>= if u then v_SV/CONST/ else w_SV/CONST/ x_SV/CONST/) =
- if u then (>= v_SV x_SV) else (>= w_SV x_SV) ;

- < : number -> number -> Bool ;
- (< if u then v_SV/CONST/ else w_SV/CONST/ x_SV/CONST/) =
- if u then (< v_SV x_SV) else (< w_SV x_SV) ;

- <= : number -> number -> Bool ;
- (<= if u then v_SV/CONST/ else w_SV/CONST/ x_SV/CONST/) =
- if u then (<= v_8SV x_8V) else (<= w_SV x_SV) ;

- (< x_SV/CONST/ Infinity) =
- if (/= x_SV Infinity) then True else (< x_SV Infinity) ;

(< Infinity x_SV/CONST/) = False ;
(< x_SV/CONST/ Infinity) = True ;

abs : number -> number ;
(abs x_SV/CONST/) = if (>= x_SV 0) then x_SV else (add x_SV (mul -2 x_SV)) ;

fabs : number -> number ;
(fabs x_SV/CONST/) = if (>= x_SV 0.0) then x_SV else (add x_SV (mul -2.0 x_SV));

mChooseN : Int -> Int -> Int ;
(mChooseN m_SV/CONST/ 0) = 1 ;
(mChooseN m_SV/CONST/ n_SV/CONST/) =
(div (facl m_SV (sub m_SV n_SV)) (fac n_SV)) ;

facl : Int -> Int -> Int ;

(facl m_SV/CONST/ n_SV/CONST/) = if (> m_SV n_SV)
then (mul m_SV (facl (sub m_SV 1) n_SV))
else 1 ;

fac : Int -> Int ;

(fac 0) =1 ;

(fac 1) =1 ;

(fac m_SV/CONST/) = (mul m_SV (fac (sub m_SV 1))) ;
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6.3 The List Module

174 (lists.es 174)=
- [0 : (List a) ;
- # : a -> (List a) -> (List a) ;

import numbers.es ;

head : (List a) -> a ;
(head (# x y)) = x ;

tail : (List a) -> (List a) ;
(tail #F xy)) =y ;

last : (List a) -> a ;
(last (# x [1)) = x;
(last (# x (# y 2))) = (Qast (# y 2)) ;

elem : Int -> (List a) -> a ;
(elem 1 (# x y)) = x ;
(elem z_SV/CONST/ (# x y)) = (elem (sub z_SV 1) y) ;

enumlList : Int -> (List Int) ;
(enumList x_SV/CONST/) = (enumList2 x_SV x_SV) ;

enumList2 : Int -> Int -> (List Int) ;
(enumList2 0 x) = [] ;
(enumList2 x_SV/CONST/ y_SV/CONST/) =
(# (add (sub y_SV x_SV) 1) (enumList2 (sub x_SV 1) y_SV)) ;

inList : a -> (List a) -> Bool ;
(inList x []) = False ;
(inList x (# y z)) = if (= x y) then True else (inList x z) ;

length : (List a) -> Int ;
(length [1) =0 ;
(length (# x y)) = (add 1 (length y)) ;

zip : (List a) -> (List b) -> (List (a * b)) ;
(zip OO0 1) =0 ;
(zip (# x1 y1) (# x2 y2)) = (# (x1,x2) (zip y1 y2)) ;

zipWith : a -> (List b) -> (List (a * b)) ;
(zipWith x [1) = [1 ;
(zipWith x (# y 2)) = (# (x,y) (zipWith x z)) ;

concat : ((List a) * (List a)) -> (List a) ;
(concat ([1,x)) = x ;
(concat ((# u x), y)) = (# u (concat (x, y))) ;

concat?2 : (List a) -> (List a) -> (List a) ;
(concat2 [] x) = x ;
(concat2 (# u x) y) = (# u (concat2 x y)) ;
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reverse : (List a) -> (List a) ;
(reverse []) = [ ;
(reverse (# x y)) = (concat ((reverse y),[x]1)) ;

append : ((List a) * (List a) * (List a)) -> Bool ;
(append (u,v,w)) =
(I @& (=u [1) (=vw)
(sigma \r.
(sigma \x.
(sigma \y.(&& (@& (=u (#r x)) (=w (1 y)))
(append (x,v,y))))))) ;

permute : ((List a) * (List a)) -> Bool ;
(permute ([1, x)) = (= x [1) ;
(permute ((# x y), w)) =
(sigma \u. (sigma \v.(sigma \z.
(&& (= w (# uv)) (&& (delete (u,(# x y),z)) (permute (z,v))))))) ;

delete : (a * (List a) * (List a)) -> Bool ;
(delete (x,[]1,y)) = False ;
(delete (x,(# y 2z),w)) =
(Il && (= xy) (=w 2))
(sigma \v.(&& (= w (# y v)) (delete (x,z,v))))) ;

sorted : (List a) -> Bool ;
(sorted []1) = True ;
(sorted (# x y)) =
if (= y [1) then True
else (sigma \u.(sigma \v.(&& (&& (= y (# u v)) (<= x u)) (sorted y)))) ;

isort : (List a) -> (List a) ;
(isort [1) = [1 ;
(isort (# x y)) = (ins x (isort y)) ;

ins : a -> (List a) -> (List a) ;
(ins x [1) = (# x [1) ;
(ins x (#y 2z)) =if (<= x y) then (# x (# y 2)) else (# y (ins x 2)) ;

isort2 : (a -> a -> Bool) -> (List a) -> (List a) ;
(isort2 p [1) = [1 ;
(isort2 p (# x y)) = (ins2 p x (isort2 p y)) ;

ins2 : (a -> a -> Bool) -> a -> (List a) -> (List a) ;
(ins2 p x [1) = (# x [1) ;
(ins2 p x (#y z)) = if (p x y) then (# x (# y z)) else (# y (ins2 p x z)) ;

fold : (a ->b ->b) ->b -> (List a) -> b ;
(foldmv [1) = v ;
(foldmv (# xy)) = (mx (foldm v y)) ;

foldr : (a -> b -> b) -> b -> (List a) -> b;
(foldr m s [1) = s ;
(foldr m s (# x y)) = (m x (foldr m s y)) ;
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filter : (a -> Bool) -> (List a) -> (List a) ;
(filter p [1) = [I ;
(filter p (# x y)) = if (p x) then (# x (filter p y)) else (filter p y) ;

map : (a -> b) -> (List a) -> (List b) ;
(map m [1) = [1 ;

(map m (# x [1)) = (# (mx) [1) ;

(mapm (#Fxy)) =@ (mx) (mapmy)) ;

rmduplicates : (List a) -> (List a) ;
(rmduplicates []) = [] ;
(rmduplicates (# x y)) = (# x (rmduplicates (removelListEle x y))) ;

removeListEle : a -> (List a) -> (List a) ;
(removeListEle x [1) = []
(removelistEle x (# y z))

if (= x y) then (removelListEle x z)
else (# y (removeListEle x z)) ;

neg : (a -> Bool) -> a -> Bool ;
(neg p x) = (not (p x)) ;

gsort : (List a) -> (List a) ;
(gsort [1) = [1 ;
(gsort (# x y)) =
(concat ((gsort (filter (meg (< x)) y)),
(# x (gsort (filter (< x) y))))) ;

listExists : (a -> Bool) -> (List a) -> Bool ;
(listExists p []) = False ;
(listExists p (# x y)) = if (p x) then True else (listExists p y) ;

sublist : Int -> (List a) -> (List a) ;
(sublist n [1) = ] ;
(sublist n (# x y)) = if (> n 0) then (# x (sublist (sub n 1) y)) else [] ;

isSublist : (List a) -> (List a) -> Bool;
(isSublist [] x) = True ;
(isSublist (# x y) []) = False ;
(isSublist (# x1 y1) (# x2 y2)) =
if (= x1 x2) then (isSublist yl1 y2) else False ;

ints : Int -> Int -> (List Int) ;
(ints x y) = if (< x y) then (# x (ints (add x 1) y)) else (# x [1) ;
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177 (sets.es 177)=
import numbers.es ;

union : (a -> Bool) -> (a -> Bool) -> (a -> Bool) ;
(union s t) = \x.(l] (s x) (¢t %)) ;

intersect : (a -> Bool) -> (a -> Bool) -> (a -> Bool) ;
(intersect s t) = \x.(&& (s x) (t x)) ;

minus : (a -> Bool) -> (a -> Bool) -> (a -> Bool) ;
(minus s t) = \x.(&& (s x) (= (t x) False)) ;

subset : (a -> Bool) -> (a -> Bool) -> Bool ;
(subset s t) = (pi \x.(implies (s x) (t x))) ;

powerset : (a -> Bool) -> ((a -> Bool) -> Bool) ;
(powerset \x.False) = \s.(= s \x.False) ;
(powerset \x.if u_SV then True else v_SV) =
\s. (sigma \t.(sigma \r.(&& ((powerset \x.u_SV) t)
(&& ((powerset \x.v_SV) r) ((= s) (union t r)))))) ;
(powerset \x.if u_SV then False else v_SV) = (powerset \x.(&%& (not u_SV) v_SV)) ;
(powerset \x.(= x t)) = \s.(|| (= s \y.False) (= s \x.(= x t))) ;
(powerset \x. (|| u_8V v_SV)) =
\s. (sigma \t.(sigma \r.(&& ((powerset \x.u_SV) t)
(&& ((powerset \x.v_SV) r) (= s (union t 1)))))) ;

linearise : (a -> Bool) -> (a -> Bool) ;
(linearise \x.False) = \x.False ;
(linearise \x.if u_SV then True else v_SV) =
(union (linearise \x.u_SV) (linearise \x.v_SV)) ;
(linearise \x.if u_SV then False else v_SV) =
(linearise \x.(&& (not u_SV) v_SV)) ;
(linearise \x.(= x t)) = \x.if (= x t) then True else False ;
(linearise \x. (|| u_SV v_SV)) = (union (linearise \x.u_SV) (linearise \x.v_SV)) ;

rmdup : (a -> Bool) -> (a -> Bool) ;
(rmdup \x.t_SV) = \x.(rmdup2 t_SV) ;

rmdup2 : Bool -> Bool ;
(rmdup2 False) = False ;
(rmdup2 True) = True ;
(rmdup2 (= x t_SV)) = (= x t_SV) ;
(rmdup2 if (= x t_SV) then True else False) =
if (= x t_SV) then True else False ;

(rmdup2 if (= x t_SV) then True else u) =

if (= x t_SV) then True else (rmdup2 (&& (/= x t_SV) u)) ; Eager ;
(rmdup2 (Il (= x t_8V) uw)) = (|| (= x t_SV) (rmdup2 (&& (/= x t_SV) u))) ;
(rmdup2 (I (Il (= x t_SV) w) v)) = (rmdup2 (|| (= x t_SV) (l| u v))) ;

rmdupCustom : (a -> a -> Bool) -> (a -> Bool) -> (a -> Bool) ;
(rmdupCustom p \x.t_SV) = \x.(rmdupCustom2 p t_SV) ;

rmdupCustom2 : (a -> a -> Bool) -> Bool -> Bool ;
(rmdupCustom2 p False) = False ;
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(rmdupCustom2 p if (= x t_SV) then True else False) =

if (= x t_SV) then True else False ;

(rmdupCustom2 p if (= x t_SV) then True else u) =
if (= x t_SV) then True else (rmdupCustom2 p (&& (not (p x t_SV)) w)) ; Eager;

card :

card2 :
(card2
(card2
(card2
(card2
(card2
(card2
(card?2
(card2

(card2
(card2

(card2

(a -> Bool) -> Int ;
(card s) = (card2 (rmdup s)) ;

(a -> Bool) -> Int ;

\X.
\x.
\x.
\x.
\x.
\x.
\x.
\x.

(=xuw) =1;
(=ux)) =1,
(Il (=xu) v_SV)) = (add 1 (card2 \x.v_SV)) ;
(Il (=ux) v_8V)) = (add 1 (card2 \x.v_SV)) ;

(Il u_SV v_8SV)) = (add (card2 \x.u_SV) (card2 \x.v_SV)) ;

False) = 0 ;

if (= x u_SV) then True else v_SV) = (add 1 (card2 \x.v_SV)) ;

if (&& (<= u_SV/CONST/ x) (<= x v_SV/CONST/)) then True else t_SV) =

(add (sub v_SV u_SV) (card2 \x.t_SV)) ;

\x.
\X.

\x.

if (>= x u_SV/CONST/) then True else t_SV) Infinity ;
if (<= x u_SV/CONST/) then True else t_SV) = Infinity ;

if x_SV then True else v_SV) = (add (card2 \x.x_SV) (card2 \x.v_SV)) ;

- typeof(x) - which x? may need to use occurrence.
- (card2 \x.(&& (= (projl x) u_SV/CONST/)

mapFn :

filterS

(filterSet
(filterSet
(filterSet

(filterSet

(= (proj2 x) v_SV/CONST/))) =1 ; typeof(19) ~ (a * b) -> Bool;

(a -> b) -> (a -> Bool) -> (b -> Bool) ;
(mapFn t s) = \x.\exists y.(&& (s y) (= (t y) x)) ;

et

(a -> Bool) -> (a -> Bool) -> (a -> Bool) ;

p \x.False) = \x.False ;

p \x.(= x v)) = if (p v) then \x.(= x v) else \x.False ;

p \x.(l| u_SV v_SV)) = (union (filterSet p \x.u_SV)
(filterSet p \x.v_SV)) ;

p \x.if (= x v) then True else v_SV) =

if (p v) then (union \x.(= x v) (filterSet p \x.v_SV))

else (filterSet p \x.v_SV) ;

pickAnElement : (a -> Bool) -> a ;
(pickAnElement \x.(= x w)) = u ;
(pickAnElement \x.if (= x u) then True else v_SV) = u ;

switch :

compare :
(compare x y) = if (= x y) then 1 else if (< x y) then 2 else 3 ;

makeBTr

ee !

Int -> Bool -> Bool -> Bool -> Bool ;
(switch 1 t1 t2 t3)
(switch 2 t1 t2 t3)
(switch 3 t1 t2 t3)

tl ;
t2
t3

a -> a -> Int ;

(a -> Bool) -> (a -> Bool) ;

- we expect the first argument to be in list form
(makeBTree \x.s_SV) = \x.(makeBTree2 (sortIte s_SV)) ;
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makeBTree2 : Bool -> Bool ;
(makeBTree2 False) = False ;
(makeBTree2 if (= x y) then True else False) = (= x y) ;
(makeBTree2 if (= x y) then True else v2) =
(switch (compare x (midEle if (= x y) then True else v2)) True
(makeBTree2 (lessthan (midEle if (= x y) then True else v2)
if (= x y) then True else v2))
(makeBTree2 (greaterthan (midEle if (= x y) then True else v2)
if (= x y) then True else v2))) ;

sortlte : Bool -> Bool ;
(sortIte False) = False ;
(sortIte if (= x y) then True else v) = (insIte (= x y) (sortIte v)) ;

insIte : Bool -> Bool -> Bool ;

(insIte (= x y) False) = if (= x y) then True else False ;

(insIte (= x_SV y) if (= z_SV/EQUAL,x_SV/ y2) then True else v) =
if (K y y2)
then if (= x_SV y) then True else if (= z_SV y2) then True else v
else if (= z_SV y2) then True else (insIte (= x_SV y) v) ;

cardBool : Bool -> Int ;
(cardBool False) = 0 ;
(cardBool if (= x y) then True else v) = (add 1 (cardBool v)) ;

get : Float -> Bool -> Bool ;
(get 1.0 if (= x y) then True else v) =y ;
(get n_SV/CONST/ if (= x y) then True else z)

(get (sub n_SV 1.0) z) ;

midEle : Bool -> a ;
(midEle s) = (get (integer (cardBool s) 2) s) ;

lessthan : a -> Bool -> Bool ;

(lessthan z False) = False ;

(lessthan z if (= x y) then True else v2) =
if (< y z) then if (= x y) then True else (lessthan z v2)
else (lessthan z v2) ;

greaterthan : a -> Bool -> Bool ;

(greaterthan z False) = False ;

(greaterthan z if (= x y) then True else v2) =
if (> y z) then if (= x y) then True else (greaterthan z v2)
else (greaterthan z v2) ;

removeBound : (a -> Bool) -> Bool ;
(removeBound \x.x_SV) = x_SV ;

simplify2D : ((a * a) -> Bool) -> ((a * a) -> Bool) ;
(simplify2D \x.(&& (= (projl x) vl1) (= (proj2 x) v2))) = \x.(= x (v1,v2)) ;
(simplify2D \x. (|| u_SV v_SV)) = (union (simplify2D \x.u_SV)

(simplify2D \x.v_SV)) ;

(multiset functions 180)
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180 (multiset functions 180)=
msetunion : (a -> Int) -> (a -> Int) -> (a -> Int) ;
(msetunion \x.0 m) = m ;
(msetunion \x.if (= x t) then v else w_SV m) =
\x.if (= x t) then (add v (m t))
else ((msetunion \x.w_SV (remove \x.(= x t) m)) x) ;

msetdiff : (a -> Int) -> (a -> Int) -> (a -> Int) ;
(msetdiff \x.0 m) = \x.0 ;
(msetdiff \x.if (= x t) then v else w_SV m) =
\x.if (= x t) then (monus v (m t)) else ((msetdiff \x.w_SV m) x) ;

msetmax : (a -> Int) -> (a -> Int) -> (a -> Int) ;
(msetmax \x.0 m) = m ;
(msetmax \x.if (= x t) then v else w_SV m)
\x.if (= x t) then (max v (m t))
else ((msetmax \x.w_SV (remove \x.(

X t) m)) x) ;

msetmin : (a -> Int) -> (a -> Int) -> (a -> Int) ;
(msetmin \x.0 m) = \x.0 ;
(msetmin \x.if (= x t) then v else w_SV m) =
\x.if (= x t) then (min v (m t)) else ((msetmin \x.w_SV m) x) ;

msetinc : (a -> Int) -> (a -> Int) -> Bool ;
(msetinc \x.0 m) = True ;
(msetinc \x.if u_SV then v else w_SV m) =
(&& (pi \x.(implies u_SV (<= v (m x))))
(msetinc (remove \x.u_SV \x.w_SV) m)) ;

msetmember : a -> (a -> Int) -> Bool ;
(msetmember x m) = (< 0 (m x)) ;



Chapter 7

Programming in Escher

7.1 Programming Examples

181 (data.es 181)=
listl : (List Int) ;
listl = [] ;

list2 : (List Int) ;
list2 = (# 1 [1) ;

1

list3 : (List Int) ;
list3 = (# 1 # 2 [1)) ;

list4 : (List Int) ;
list4 (# 1 1list3) ;

list5 : (List Int) ;
1listb (# 2 list4) ;

list6 : (List Int) ;
list6 = (# 1 (# 1 (# 2 # 3 @4 1)) ;

list7 : (List Int) ;
list7 (#1 (#1 (2 (#3 #3 4440000 ;

1list8 : (List Int) ;
list8 = (# 1 (# 1 (# 2 (B3 #3 # 4 H# 4 GE3DOONDONN ;

1list88 : (List Int) ;
list88 = (# 1 (# 1 (# 2 (# 3 # 3 (# 4 #H 4 E3IINNM)

1ist9 : (List Int) ;
list9 = (# 1 (# 1 (# 2 #3 @3 0ON)N)

usl : (List Int) ;
usl = (# 199 (# 3 (# 2 (# 1 (# 99 (# 12 (# 20 (# 21 (# 51 F 42 ONDIMN))

us2 : (List Int) ;
us2 = (# 7 (# 33 (# 120 (# 1 (# 199 (# 1012 (# 1120 (# 821 (# 851 (# 542 us1)))INII)))

181
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182

us3 :

us3 =

us4d :

us4d =

usb :

usb =

us6 :

us6 =

- Thi
setl
setl

S

set2 :

set2

set3 :

set3

setd :

setd

setb :

setb

{-

Annie, Bill, Mary, Joe, Harry, Ginny :
prod0 :
= (Annie,

prod0
prodil
prodl

prod2
-}

(List Int)

(# 0 (# 44 (# 12 (# 15 (# 990 (# 125 (# 2220 (# 921 (# 511 (# 442 us2)))))N)))

(List Int)

B

B

(# 20 (# 98 (# 290 (# 10 (# 90 (# 123 (# 2300 (# 210 (# 513 (# 342 us3))))NN))

(List Int)

(# 13 (# 32 (# 29 (# 9 (# 299 (# 122 (# 200 (# 219 (# 5134 (# 242 us4)))))IN)))

(List Int)

(# 180 (# 39 (# 27 (# 13 (# 91 (# 112 (# 25 (# 211 (# 151 (# 142 us5))))))))))

B

B

is an example of a

\x.if (=

: Int -> Bool ;

x 1) then

Int -> Bool ;

\x.if (=

x 2) then

Int -> Bool ;

\x.if (=

x 1) then

Int -> Bool ;

\y.if (=

y 1) then

Int -> Bool ;

\x.if (=

(People

(People

= (Annie,
prod2 :
= (Annie,

(People

x 2) then

function with arity 1 but effective arity O

True else if (= x 2) then True else False ;

True

True

True

True

else

else

else

else

if (=

False ;

False

if (=

X

B

X

1) then True else False ;

3)

People ;

*x People * People * People) ;
Bill, Mary, Joe) ;
* People * People * People) ;

Harry, Ginny, Joe) ;

* People * People * People) ;

Harry, Ginny, Joe) ;

then True

else False ;

>

B

>

>

>
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183 (queries.es 183)=
import booleans.es ;
import lists.es ;
import sets.es ;
import data.es ;

: (isort us6) ; - (2855, 0.467)
: (gsort us6) ; - (18249, 2.007)

=0 0); -

: (= prodO prodl) ; - (8)

: (= prod2 prodl) ; - (10)

: (= 1list3 1list2) ; - (6)

¢ (= 1ist88 1ist8) ; - (27) - 0.010

: ((less \pve2.((= pve2) 1)) \pve3.((= pve3d) 1)) ;

: (= set3 setd) ; - (22)
: (= set3 seth) ; - (15)
: (= setl set2) ; - (66) - 0.021

There is a difference because of simplifyConjunction2
: (append (x, y, list2)) ; - (21)
: (append (u, v, list2 )) ; - (23)

: (append (x, y, list8)) ; - (150)
: (append (u, v, list8)) ; - (128)
: (append (list9, z, (concat (list8, 1list6))))
: (append (list6, v, (concat (list8, 1list6))))
: (append (list9, (concat (list8, 1list6)), x))
: (append (1list9, (concat (1list8, 1list6)), w))

91

(78)

(149) - var capture
(155) - 0.164

e e we we
I | |

: (delete (1, ((#2) (¢ 1D 1), (#2) 1)) ;- (b
: (delete ( 12, ((# 2) ((# 1) [1D), (# 2) [1)) ; - (16
: (delete (2, ((#2) (# 1) (#2) [ )M, x)); - (28) - 0.012

: (permute (((# 1) [1) , x)) ; - (19)
¢ (permute ( ((# 2) ((# 1) [1)), x)) ; - (85) - 0.022

: (permute ( ((# 3) ((# 2) (# 1) [, ) ; - (292, 0.064)
: (permute ( (# 10 (# 3 (# 2 (# 1 [1)))), %)) ; - (1328, 0.440)
: (permute ( (# 12 (# 10 (# 3 # 2 (# 1 [HN)), x)) ; - (6305, 7.061)

: (sorted 1list7) ; - (74)

: (sorted list8) ; - (71)
: (sorted (isort us6)) ; - (8668) - 1.809

crickettennis = \x.if (= x Cricket) then True

else if (= x Tennis) then True else False ;

: \x.(pi \y.(implies (crickettennis y) (likes (x,y)))) - (159)
: \x.(pi \y.(implies (favourite y) (likes (x,y)))) - (129) - 0.038
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- ¢ (powerset \x.((l| ((= x) 1)) ((=x) 2))) - (41)
- ¢ (linearise \x.((I| ((= x) 1)) ((=x) 2))) - (8)
- ¢ ((union \x.((ll ((=x) 1)) ((=x) 2))) \x.((I] ((=x) 1)) ((=x) 3))) - (3

- : (intersect set12 set13) - (31)
- - 0.021

- : (msetunion msetl mset2) - (52)

- : (msetdiff msetl mset2) - (22)

- : (msetmax msetl mset2) - (52)

- : (msetmin msetl mset2) - (19) - 0.015

- : (msetinc msetO mset2) - (34)
- : (msetmember F msetl) - (8)
- : (msetmember A msetl) - (6) - 0.0012

- bunch = \x.if (= x (Abloy,3,Short,Normal)) then True

- else if (= x (Abloy,4,Medium,Broad)) then True else False ;
- (projmake (x1,x2,x3,x4)) = x1

- (projlength (x1,x2,x3,x4)) = x3

- - cond : Key -> Bool

- cond = \x.(&& (= Abloy (projmake x)) (= Medium (projlength x)))

- (setexistsl p t) = (sigma \x.(&& (t x) (p x)))

- : (setexistsl cond bunch) - (27, 0.0010)

Avon , Bedfordshire , Berkshire ,
Buckinghamshire , Cambridgeshire , Cornwall ,
Devon , Dorset , Essex , Gloucestershire ,
Hampshire , Herefordshire , Hertfordshire ,

Kent , London , Northamptonshire , Oxfordshire ,
Somerset , Surrey , Sussex , Warwickshire ,
Wiltshire , Worcestershire : County ;

Bath , Bournemouth , Bristol , Cheltenham ,
Cirencester , Dorchester , Exeter , Gloucester ,
Penzance , Plymouth , Salisbury , Shaftesbury ,
Sherbourne , Taunton , Torquay , Truro ,
Winchester : City ;

neighbours : (County * County) -> Bool ;
neighbours =
\x.if (= x (Devon, Cornwall)) then True
else if (= x (Devon, Dorset)) then True

else if (= x (Devon, Somerset)) then True
else if (= x (Avon, Somerset)) then True
else if (= x (Avon, Wiltshire)) then True
else if (= x (Avon, Gloucestershire)) then True



7.1. PROGRAMMING EXAMPLES 185

else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if

Fa T T T T - - R T T T T o T T R T T T T T T I A I T R I T o < T T - - A

(Dorset, Wiltshire)) then True

(Somerset, Wiltshire)) then True
(Gloucestershire, Wiltshire)) then True
(Dorset, Somerset)) then True

(Dorset, Hampshire)) then True

(Hampshire, Wiltshire)) then True
(Hampshire, Berkshire)) then True
(Hampshire, Sussex)) then True

(Hampshire, Surrey)) then True

(Sussex, Surrey)) then True

(Sussex, Kent)) then True

(London, Surrey)) then True

(London, Kent)) then True

(London, Essex)) then True

(London, Hertfordshire)) then True

(London, Buckinghamshire)) then True
(Surrey, Buckinghamshire)) then True
(Surrey, Kent)) then True

(Surrey, Berkshire)) then True
(0Oxfordshire, Berkshire)) then True
(Oxfordshire, Wiltshire)) then True
(Oxfordshire, Gloucestershire)) then True
(Oxfordshire, Warwickshire)) then True
(Oxfordshire, Northamptonshire)) then True
(Oxfordshire, Buckinghamshire)) then True
(Berkshire, Wiltshire)) then True
(Berkshire, Buckinghamshire)) then True
(Gloucestershire, Worcestershire)) then True
(Worcestershire, Herefordshire)) then True
(Worcestershire, Warwickshire)) then True
(Bedfordshire, Buckinghamshire)) then True
(Bedfordshire, Northamptonshire)) then True
(Bedfordshire, Cambridgeshire)) then True
(Bedfordshire, Hertfordshire)) then True
(Hertfordshire, Essex)) then True
(Hertfordshire, Cambridgeshire)) then True
(Hertfordshire, Buckinghamshire)) then True
(Buckinghamshire, Northamptonshire)) then True else False ;

distance : (City * City * Int) -> Bool ;

distance =
\x.if (= x
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if
else if

(Plymouth, Exeter, 42)) then True

X

Ea T T T - T - I R I

(Exeter, Bournemouth, 82)) then True
(Bristol, Taunton, 43)) then True
(Bristol, Gloucester, 35)) then True
(Torquay, Exeter, 23)) then True
(Plymouth, Torquay, 24)) then True
(Bristol, Bath, 13)) then True
(Exeter, Taunton, 34)) then True
(Penzance, Plymouth, 78)) then True
(Taunton, Bournemouth, 70)) then True
(Bournemouth, Salisbury, 28)) then True
(Taunton, Salisbury, 64)) then True
(Salisbury, Bath, 40)) then True
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else if (= x (Bath, Gloucester, 39)) then True
else if (= x (Bournemouth, Bath, 65)) then True
else if (= x (Truro, Penzance, 26)) then True
else if (= x (Plymouth, Truro, 52)) then True
else if (= x (Shaftesbury, Salisbury, 20)) then True
else if (= x (Sherbourne, Shaftesbury, 16)) then True
else if (= x (Dorchester, Bournemouth, 28)) then True
else if (= x (Salisbury, Winchester, 24)) then True
else if (= x (Exeter, Sherbourne, 53)) then True
else if (= x (Sherbourne, Taunton, 29)) then True
else if (= x (Bath, Cirencester, 32)) then True
else if (= x (Cirencester, Cheltenham, 16)) then True
else if (= x (Cheltenham, Gloucester, 9)) then True
else if (= x (Dorchester, Sherbourne, 19)) then True
else if (= x (Bath, Shaftesbury, 33)) then True
else if (= x (Winchester, Bournemouth, 41)) then True
else if (= x (Exeter, Dorchester, 53)) then True else False ;
isin : (City * County) -> Bool ;
isin =
\x.if (= x (Bristol, Avon)) then True
else if (= x (Taunton, Somerset)) then True
else if (= x (Salisbury, Wiltshire)) then True
else if (= x (Bath, Avon)) then True
else if (= x (Bournemouth, Dorset)) then True
else if (= x (Gloucester, Gloucestershire)) then True
else if (= x (Torquay, Devon)) then True
else if (= x (Penzance, Cornwall)) then True
else if (= x (Plymouth, Devon)) then True
else if (= x (Exeter, Devon)) then True
else if (= x (Winchester, Hampshire)) then True
else if (= x (Dorchester, Dorset)) then True
else if (= x (Cirencester, Gloucestershire)) then True
else if (= x (Truro, Cornwall)) then True
else if (= x (Cheltenham, Gloucestershire)) then True
else if (= x (Shaftesbury, Dorset)) then True
else if (= x (Sherbourne, Dorset)) then True else False ;

: \x.(sigma \y.(&& (|| (distance (Bristol, x, y))

(<y 40)) ) ; - (582, 0.070)
: \x.\y.(sigma \z.(&& (distance (x,y,z)) (< z 20))) ; - (239, 0.043)
: \x.(I| (neighbours (Oxfordshire,x)) (neighbours (x, Oxfordshire))) ;
- (395, 0.059)
: \x.(sigma \y.(&& (isin (x,y)) (/= y Wiltshire))) ; - (158, 0.037)

(distance (x, Bristol, y)))

: \x.(sigma \y.(&& (|| (neighbours (Oxfordshire,y))

- (1174, 0.150)

¢ \x.(sigma \y.(&& (isin (x,y)) (|| (neighbours (Oxfordshire,y))

(neighbours (y, Oxfordshire))) (isin (x,y)))) ;
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- (neighbours (y, Oxfordshire))) )) ; - (9446, 1.369)

- westcountry : County -> Bool ;

- westcountry = \x.if (= x Devon) then True else if (= x Cornwall) then True
- else if (= x Somerset) then True

- else if (= x Avon) then True else False ;

- : \x.(sigma \y.(&& (westcountry y) (isin (x,y)))) ; - (293, 0.054)

- : \x.(sigma \y.(sigma \z.(&& (|| (distance (Bristol, y, z))
- (distance (y, Bristol, z)) ) (&& (< z 50) (isin (y,x))) ))) ; - (915, 0.130)

- ¢ (pi \x.(implies (|| (neighbours (Avon,x)) (neighbours (x,Avon)))
- (sigma \y.(isin (y,x))) )) ; - (740, 0.364)

- : (sigma \x.(&& (isin (Bristol, x))

- (pi \z.(implies (sigma \y.(&& (|| (distance (Bristol, z, y))
- (distance (z, Bristol, y))) (< y 40)))
- (isin (z, x)))))) ; - (335, 0.073)

187 (tricks.es 187)=
- these rules are supposed to bring out conjunctively embedded terms of the
- form (x = t).
- a loop can occur if the NOTAPP condition in the third statement is not
- in place
- (&& u_SV{NOTAPP,=} (= x_SV{VAR} t_SV))
- (&& (&& (= x_SV{VAR} t_SV) u_SV) v_sSV)
- (&& (= x_SV t_SV) (&& u_SV v_SV))
- (&& u_SV{NOTAPP,=} (&& (= x_SV{VAR} t_SV) v_SV)) =
- (&& (= x_SV t_SV) (&& u_SV v_SV))

(&& (= x_SV t_SV) u_sV)

- swap equality order
- (= t_SV{NOTVAR} x_SV{VAR}) = (= x_SV t_SV)
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(tvrec.es 188)=

(weekday x) =

(whatday (x,y,
(mod
(sub
(add (add

7

(decode_day 0)
(decode_day 1)
(decode_day 2)
(decode_day 3)
(decode_day 4)
(decode_day 5)
(decode_day 6)

(julian_day (x
(julian_day (x

(sumDays (y,z)

if (<= 2 (whatday x)) then True else False ;

z)) =

(add z

(julian_day (x,y,2)))
(integer (sub z 1) 4))
(integer (sub z 1) 400))
(integer (sub z 1) 100))

= Saturday
= Sunday
= Monday
= Tuesday
= Wednesday
= Thursday
= Friday

,1,2)) = x
,Y,2))

) =

(add x (sumDays ((sub y 1),2)))

if (= y 1) then (numberOfDays (1,z))
else (add (numberOfDays (y,z)) (sumDays ((sub y 1),z))) ;

(number0fDays
(number0fDays
(number0fDays
(number0fDays
(number0fDays
(number0fDays
(number0fDays
(number0fDays
(number0fDays
(number0fDays
(number0fDays
(number0fDays

(leap_year x)

(1,x)) = 31
(2,x)) = if
(3,x)) =31
(4,x)) = 30
(5,x)) = 31
(6,x)) = 30
(7,x)) = 31
(8,x)) = 31
(9,x)) = 30
(10,x)) = 31
(11,x)) = 30
(12,x)) = 31
= if (= (mod
then if (=

else False

(leap_year x) then 29 else 28 ;

x 4) 0)
(mod x 100) 0) then (= (mod x 400) 0) else True

B

(decode_day (whatday (1,11,2005)))

Comment 7.1.1. The following is a program that calculates the day a particular date falls on.
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7.2 Programming Tips

Comment 7.2.1. To minimize the impact of the logic programming rules on efficiency, try to
put code that can instantiate variables at the leftmost possible position. For example, one should
write

setExists; pt = Jz.((t ) A (p x))
instead of
setExists; pt = Jz.((p x) A (t x)).
Comment 7.2.2.
Az.(Fy.(((neighbours( Ozfordshire, y)) V (neighbours(y, Oxfordshire))) A (isin(z,y))))

-- Steps = 1176

-- Final Answer:

-- \x.if (= x Salisbury) then True else if (= x Gloucester) then True
-- else if (= x Cirencester) then True else (= x Cheltenham)

Az.(Fy.((isin(z,y)) A ((neighbours( Ozfordshire, y)) V (neighbours(y, Ozfordshire)))))

-- Total candidate redexes tried = 91659

-- Steps = 9447

-- Final Answer:

-- \x.if (= x Salisbury) then True else if (= x Gloucester) then True
-- else if (= x Cirencester) then True else (= x Cheltenham)

Comment 7.2.3. The following definition would not work. Why?

I

1
(mul (fac (sub n 1)) n)

(fac 0)
(fac n)

Comment 7.2.4. This also wouldn’t work properly (sometimes) for the same reason.

(smallest (# x [1)) = x
(smallest (# x y)) = if (smaller2 x (smallest y)) then x else (smallest y)
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A Listing of the Code Chunks

apply (x,t) to each eqn in eqns, extend eqns and return true 19b)
delete eqns of the form x = x 18d)

if x appears in t, return false 19a)

type checking 28a)

type checking actual 22a)

type checking subsidiary functions 27b)
type checking variables 22b)
type::abstractions 14b)
type::abstractions::implementation 14c)
type::algebraic types 16b)

type::algebraic types:implementation 17a)
type::composite types 10c)

type::composite types::implementation 10d)
type::function declarations 12f)
type::functions 10b)

type::parameters 11d)
type::parameters::implementation 12a)

type::tuples 13c)

type::tuples::implementation 13d)

type::type 9b)

unification body 18a)

unification.cc 17¢)

unification.h 17b)

unify::case of both non-parameters 21a)
unify::verbose 1 21b)

unify::verbose 2 21c)

variable case::lookup previous occurrence 24b)
wellTyped2::application::error reporting2 26a)
wellTyped2::application::t1 should have right form 25b)
wellTyped2::case of t a constant 23a)
wellTyped2::case of t a modal term 26c)
wellTyped2::case of t a tuple 27a)
wellTyped2::case of t a variable 24a)
wellTyped2::case of t an abstraction 26b)
wellTyped2::case of t an application 25a)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
gtype: :synonyms 13b)
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

190
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(wellTyped2::save n return 23b)

(cannot possibly be a redex 81a)

(cannot possibly be a redex 2 82e)

(debug matching 1 92d)

(debug matching 2 92¢)

(debug matching 3 92f)

(debug matching 4 93a)

(error handling::get previously bound 101b)
(freememory error checking 42a)
(freevar-match::case of ABS 109a)
(freevar-match::case of APP 109b)
(freevar-match::case of MODAL 109¢)
(freevar-match::case of PROD 109d)

(heap term init 29e)

(isEq::switch t1 and t2 72b)

(isFuncNotRight Args::error handling 83f)
(normalisel::and 59a)

(normalisel::iff 59b)

(pattern-match.cc 113c)

(pattern-match::function declarations 99a)
(pattern-match::functions 99b)

(pattern-match.h 113b)

(print error handling 36d)

(print extra information 37c)

(print white spaces 37b)

(redex-match::case of ABS 103b)
(redex-match::case of ABS::change variable name 103c)
(redex-match::case of APP 102c)
(redex-match::case of APP::debug matching 1 102d)
(redex-match::case of APP::debug matching 2 102e)
(redex-match::case of MODAL 104)
(redex-match::case of PROD 103a)
(redex-match::case of SV 100b)

(redex-match::case of SV::check constraints 101a)
(redex-match::case of V 101c)

(redex-match::case of V::check free variable capture condition 102a)
(redex-match::case of constant 102b)

(redex-match::write a small warning message 103d)
(reduce::small APP optimization 85b)

(simpl output 91a)

(simplify update pointers 62a)

(simplify Arithmetic::add, subtract, multiply and divide 66)
(simplifyConjunction2::create body 74)

(simplifyEquality::case of applications 64a)
(simplifyEquality::case of products 63a)

(simplifyEquality::case of products::empty tuples 63b)
(simplifyEquality::case of products::error handling 63c)
(simplifyEquality::case of strings 62d)

(simplifyEquality::check whether we have data constructors 64b)
(simplifyEquality::identical variables and function symbols 62b)
(simplifyEquality::irrelevant cases 62c)

(simplifyEquality::local variables 63d)

(simplifyExistential::case one and two 75¢c)
(simplifyExistential::move to the body 75b)
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(simplifyExistential::tricky case 76a)
(simplifyExistential::tricky case::general case 76c)
(simplifyExistential::tricky case::special case 76b)
(simplifyUniversal::change end game 79a)
(simplify Universal::check the form of body 78b)
(simplifyUniversal::general case 79b)
(simplifyUniversal::special case 78d)
(simplify Universal::true statement 78c)
(simplifyWithTP::call theorem prover 107a)
(subst2::case of SV 52c)

(subst2:case of V 53h)

(subst2:free variable captured 54a)
(subst2::replace by ti 53a)

(term bool parts 31a)

(term clone parts 29f)

(term init 29d)

(term parts 29b)

(term replace parts 29g)

(term schema::equal::numbers 34c)
(term schema::print if-then-else 36c)
(term schema::print lists 36b)

(term schema::print strings 36a)

(term vector parts 30b)
(term::definitions 38a)

(term::function declarations 30a)
(term::function definitions 32e)
(term::function definitions::unused 105)
(term::memory management 39a)
(terms.cc 113a)

(terms.cc::local functions 33c)

(terms.h 111)

(term::supporting types 38b)
(term::type defs 29a)

(try disruptive 93b)

(try match 87)

(try match::cache computation 89b)
(try match::debugging code 1 92c)

(try match::different simplifications 90)
(try match::eager statements 91b)

(try match::output answer 92b)

(
(
(
(
(
(
(
(
(
(
(
(
(
(

try match::output pattern matching information 92a)

try match::put reduct in place 88b)

try match::reduce temp to simplest form 89a)
try match::try cached statements first 88a)
try match::unimportant things 91c)

escher main program 136a)
escher-parser::statement schema 122b)
escher-parser::statement schema cache 124b)
escher-parser.y 119)

escher-scan.l 115)

facilities for handling multiple input files 118a)
flex options 118b)

lex error reporting hackery 117b)

lex:copy yytext 117a)
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(lex:tpos 117c)
(parser::cache computed result 121b)
(parser::error reporting 137b)
(parser:function declarations 120d)
(parser:import 120b)
(parser::make sure statement head has the right form 123)
(parser::perform a computation 121a)
(parser::preprocess statements 124a)
(parser::query 120e)
(parser::query::output query 121c)
(parser:query::output result 121d)
(parser:quit 120a)
(parser::statement schema 122a)
(parser::sv condition 128c)
(parser::term schema 125)
(parser::term schema products 129d)
(parser::term schemas 129b)
(parser::type info 132)
(parser::type info::unused 135)
(parser::variables 120c)
(statement schema::control directives 124c)
(term schema::existential statements 128a)
(term schema::if-then-else statements 127b)
(term schema::lists 131)
(term schema::products 129¢)
(term schema::sets 130)
(term schema::strings 127a)
(term schema::syntactic sugar 129a)

(term schema::universal statements 128b)

(yacc token definitions 117d)

(BN node:clone 141c)

(BN node:print 141a)

(constants and their signatures 151)
(editType:clone 141d)

(editType:freememory 141e)

(editType:print 141b)

(editType:subst 140c)

{function symbol table 154a)

(global symbol constants 148a)

(global.cc 143a)

(global:data types 139a)

(global:external functions 148b)

(global:external variables 143c)

(global.h 138)

(initialise constants::arithmetic operations 152a)
(initialise constants::disruptive operations 152c)
(initialise constants::relational operations 152b)
(insert constant:error message 153b)

(misc functions 159a)

(nonrigid constants 156¢)

(run-time options 143b)

(statements and type checking 149a)
(statements insertion and printing 158a)

(string constants 144a)
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type name to type objects mapping 157a)
io.cc 165)
io::common print command 166a)
io::common print command In 166b)
io::file 166¢)
io::file 2 166d)

::file 3 166f)

o

i
io::file 4 166g)
::file 2a 166¢)

o O

i
io.h 164)

booleans.es 167)
existential statements 170)
lists.es 174)

multiset functions 180)
numbers.es 172)

sets.es 177)

universal statements 171)
data.es 181)

queries.es 183)

tricks.es 187)

tvrec.es 188)

o

o~~~ o~~~ o~~~ o~~~ o~~~ o~~~ o~~~

symbols and their integer representations 145)
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